State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Water Res. 2024 Sep 1;261:122063. doi: 10.1016/j.watres.2024.122063. Epub 2024 Jul 8.
Microbial manganese (Mn) oxidation, predominantly occurs within the anaerobic-aerobic interfaces, plays an important role in environmental pollution remediation. The anaerobic-aerobic transition zones, notably riparian and lakeside zones, are hotspots for algae-bacteria interactions. Here, we adopted a Mn(II)-oxidizing bacterium Pseudomonas sp. QJX-1 to investigate the impact of algae on microbial Mn(II) oxidation and verify the underlying mechanisms. Interestingly, we achieved a remarkable enhancement in bacterial Mn(II)-oxidizing activity within the algae-bacteria co-culture, despite the inability to oxidize Mn(II) for the algae used in this study. In addition, the bacterial density almost remains constant in the presence of algal cells. Therefore, the increased Mn(II) oxidation by QJX-1 in the presence of algae cannot be due to the increased biomass. Within this co-culture system, the Mn(II) oxidation rate surged to an impressive 0.23 mg/L/h, in stark contrast to 0.02 mg/L/h recorded within pure QJX-1 system. The presence of algae could inhibit the Fe-S cluster activity of QJX-1 by the produced active substance in co-culture, and result in the acceleration of extracellular superoxide production due to the impairment of electron transfer functions located in QJX-1 cell membranes. Moreover, elevated peroxidase gene expression and heightened extracellular catalase activity not only expedited Mn(II) ions oxidation but also facilitated conversion of intermediate Mn(III) ions into microbial Mn oxides, achieved through the degradation of hydrogen peroxide. Therefore, the acceleration of extracellular superoxide production and the decomposition of hydrogen peroxide are identified as the principal mechanisms behind the observed enhancement in Mn(II) oxidation within algae-bacteria co-cultures. Our findings highlight the need to consider the effect of algae on microbial Mn(II) oxidation, which plays an important role in the environmental pollution remediation.
微生物锰(Mn)氧化主要发生在厌氧-好氧界面,在环境污染修复中起着重要作用。厌氧-好氧过渡带,特别是河岸和湖滨带,是藻类-细菌相互作用的热点。在这里,我们采用一株 Mn(II)氧化细菌 Pseudomonas sp. QJX-1 来研究藻类对微生物 Mn(II)氧化的影响,并验证其潜在机制。有趣的是,尽管本研究中使用的藻类不能氧化 Mn(II),但在藻类-细菌共培养中,细菌 Mn(II)氧化活性显著增强。此外,在有藻类细胞存在的情况下,细菌密度几乎保持不变。因此,在藻类存在的情况下,QJX-1 增加的 Mn(II)氧化不能归因于生物量的增加。在这个共培养系统中,Mn(II)氧化速率飙升至令人印象深刻的 0.23 mg/L/h,与纯 QJX-1 系统中记录的 0.02 mg/L/h 形成鲜明对比。藻类的存在可以通过共培养中产生的活性物质抑制 QJX-1 的 Fe-S 簇活性,并且由于 QJX-1 细胞膜中电子传递功能的损害,导致细胞外超氧化物的产生加速。此外,过氧化物酶基因表达的升高和细胞外过氧化氢酶活性的增强不仅加速了 Mn(II)离子的氧化,而且促进了中间 Mn(III)离子转化为微生物 Mn 氧化物,这是通过过氧化氢的降解实现的。因此,细胞外超氧化物产生的加速和过氧化氢的分解被确定为藻类-细菌共培养中观察到的 Mn(II)氧化加速的主要机制。我们的发现强调了需要考虑藻类对微生物 Mn(II)氧化的影响,这在环境污染修复中起着重要作用。