Jung Jaeyoung K, Dreyer Kathleen S, Dray Kate E, Muldoon Joseph J, George Jithin, Shirman Sasha, Cabezas Maria D, D'Aquino Anne E, Verosloff Matthew S, Seki Kosuke, Rybnicky Grant A, Alam Khalid K, Bagheri Neda, Jewett Michael C, Leonard Joshua N, Mangan Niall M, Lucks Julius B
Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA).
Center for Synthetic Biology, Northwestern University (Evanston, IL, USA).
bioRxiv. 2024 Jul 3:2024.07.03.601853. doi: 10.1101/2024.07.03.601853.
Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20 - 200 aM sensitivity without any specialized equipment. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.
近年来,人们对即时核酸诊断技术的开发产生了浓厚兴趣,以解决基于实验室方法的规模限制问题。其中主要包括等温扩增方法与基于CRISPR的靶标产物检测和读数的结合。在此,我们通过开发和优化一种一锅法NASBA-Cas13a核酸检测方法,为快速、可编程的即时病原体检测方法的不断发展做出了贡献。该检测方法使用等温扩增技术NASBA扩增靶标病毒核酸,随后基于Cas13a检测扩增序列。我们首先展示了一种内部配制的NASBA,它能够优化各个NASBA组件。然后,我们提出了NASBA引物组和LbuCas13a引导RNA的设计规则,用于快速、灵敏地检测SARS-CoV-2病毒RNA片段,在无需任何专门设备的情况下实现了20 - 200 aM的灵敏度。最后,我们探索了高通量检测条件筛选与反应方案的机理常微分方程建模的结合,以更深入地了解NASBA-Cas13a系统。这项工作提出了一个框架,用于发展对反应性能和优化的机理理解,该框架同时使用实验和建模,我们预计这将有助于未来核酸检测技术的发展。