John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States.
Acc Chem Res. 2024 Aug 6;57(15):2013-2026. doi: 10.1021/acs.accounts.4c00049. Epub 2024 Jul 15.
ConspectusIntegrating functional materials and devices with living systems enables novel methods for recording, manipulating, or augmenting organisms not accessible by traditional chemical, optical, or genetic approaches. (The term "device" refers to the fundamental components of complex electronic systems, such as transistors, capacitors, conductors, and electrodes.) Typically, these advanced materials and devices are synthesized, either through chemical or physical reactions, outside the biological systems (ex situ) before they are integrated. This is due in part to the more limited repertoire of biocompatible chemical transformations available for assembling functional materials in vivo. Given that most of the assembled bulk materials are impermeable to cell membranes and cannot go through the blood-brain barrier (BBB), the external synthesis poses challenges when trying to interface these materials and devices with cells precisely and in a timely manner and at the micro- and nanoscale─a crucial requirement for modulating cellular functions. In contrast to presynthesis in a separate location, in situ assembly, wherein small molecules or building blocks are directly assembled into functional materials within a biological system at the desired site of action, has offered a potential solution for spatiotemporal and genetic control of material synthesis and assembly.In this Account, we highlight recent advances in spatially and temporally targeted functional material synthesis and assembly in living cells, tissues and animals and provide perspective on how they may enable novel probing, modulation, or augmentation of fundamental biology. We discuss several strategies, starting from the traditional nontargeted methods to targeted assembly of functional materials and devices based on the endogenous markers of the biological system. We then focus on genetically targeted assembly of functional materials, which employs enzymatic catalysis centers expressed in living systems to assemble functional materials in specific molecular-defined cell types. We introduce the recent efforts of our group to modulate membrane capacitance and neuron excitability using in situ synthesized electrically functional polymers in a genetically targetable manner. These advances demonstrate the promise of in situ synthesis and assembly of functional materials and devices, including the optogenetic polymerization developed by our lab, to interface with cells in a cellular- or subcellular-specific manner by incorporating genetic and/or optical control over material assembly. Finally, we discuss remaining challenges, areas for improvement, potential applications to other biological systems, and novel methods for the in situ synthesis of functional materials that could be elevated by incorporating genetic or material design strategies. As researchers expand the toolkit of biocompatible in situ functional material synthetic techniques, we anticipate that these advancements could potentially offer valuable tools for exploring biological systems and developing therapeutic solutions.
将功能材料和器件与生命系统集成,为记录、操作或增强传统化学、光学或遗传方法无法触及的生物体提供了新方法。(术语“器件”是指晶体管、电容器、导体和电极等复杂电子系统的基本组成部分。)通常,这些先进的材料和器件是通过化学或物理反应在生物系统之外(异位)合成的,然后再进行集成。这部分是由于体内组装功能材料的生物相容性化学转化的可用范围有限。鉴于大多数组装的大块材料对细胞膜不可渗透,并且无法穿过血脑屏障 (BBB),因此当试图精确且及时地将这些材料和器件与细胞接口连接时,外部合成会带来挑战,并且需要在微纳尺度上进行操作,这是调节细胞功能的关键要求。与在单独位置进行预合成相反,原位组装是指将小分子或构建块直接组装到生物系统中所需作用部位的功能材料中,为材料合成和组装的时空和遗传控制提供了一种潜在的解决方案。在本综述中,我们重点介绍了在活细胞、组织和动物中进行空间和时间靶向功能材料合成和组装的最新进展,并提供了如何利用它们来实现对基础生物学的新探索、调节或增强的观点。我们讨论了几种策略,从传统的非靶向方法开始,到基于生物系统内源性标记物的功能材料和器件的靶向组装。然后,我们将重点介绍基于酶催化中心的功能材料的基因靶向组装,这些酶催化中心在活系统中表达,用于在特定的分子定义的细胞类型中组装功能材料。我们介绍了我们小组最近的努力,使用在遗传上可靶向的方式在原位合成电功能聚合物来调节膜电容和神经元兴奋性。这些进展证明了原位合成和组装功能材料和器件的前景,包括我们实验室开发的光遗传学聚合反应,通过将遗传和/或光学控制纳入材料组装中,以细胞或亚细胞特异性的方式与细胞接口。最后,我们讨论了剩余的挑战、改进的领域、对其他生物系统的潜在应用以及通过纳入遗传或材料设计策略可以提高的原位合成功能材料的新方法。随着研究人员扩展生物相容性原位功能材料合成技术工具包,我们预计这些进展可能为探索生物系统和开发治疗解决方案提供有价值的工具。