ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland..
J Control Release. 2024 Sep;373:252-264. doi: 10.1016/j.jconrel.2024.07.025. Epub 2024 Jul 18.
In an earlier investigation, our group introduced the TFAMoplex, a transfection agent based on the mitochondrial transcription factor A (TFAM) protein, which complexes DNA into nanoparticles. The original TFAMoplex further contained a bacterial phospholipase to achieve endosomal escape, and the vaccinia-related kinase 1 (VRK1), which significantly boosted the transfection efficiency of the system by an unknown mechanism. This study aims at replacing VRK1 within the TFAMoplex with dynein light chain proteins, specifically RP3, to directly tether the complexes to the dynein motor complex for enhanced cytosolic transport. To confirm the interaction between the dynein complex and the resulting fusion protein, we examined the binding kinetics of TFAM-RP3 to the dynein intermediate chains 1 and 2. Furthermore, we established a proteomics-based assay to compare cytosolic protein interactions of different TFAMoplex variants, including the RP3-modified version and the original VRK1-containing system. In the group of the VRK1-containing TFAMoplex, significant shifts of protein interactors were observed, especially for nucleolar proteins. Leveraging this knowledge, we incorporated one of these nuclear proteins, leucine-rich repeat-containing protein 59 (LRRC59), into the TFAMoplex, resulting in a significant improvement of transfection properties compared to the RP3-modified system and comparable levels versus the original, VRK1-containing version. This study not only advances our comprehension of the TFAMoplex system but also offers broader insights into the potential of protein engineering for designing effective gene delivery systems.
在之前的一项研究中,我们小组介绍了 TFAMoplex,这是一种基于线粒体转录因子 A(TFAM)蛋白的转染试剂,可将 DNA 复合物成纳米颗粒。原始的 TFAMoplex 还包含一种细菌磷脂酶,以实现内体逃逸,而痘苗相关激酶 1(VRK1)通过未知机制显著提高了该系统的转染效率。本研究旨在用动力蛋白轻链蛋白,特别是 RP3,取代 TFAMoplex 中的 VRK1,以便将复合物直接连接到动力蛋白马达复合物上,从而增强细胞质运输。为了确认动力蛋白复合物与所得融合蛋白之间的相互作用,我们研究了 TFAM-RP3 与动力蛋白中间链 1 和 2 的结合动力学。此外,我们建立了一种基于蛋白质组学的测定法,以比较不同 TFAMoplex 变体(包括 RP3 修饰的版本和原始的含有 VRK1 的系统)的细胞质蛋白相互作用。在含有 VRK1 的 TFAMoplex 组中,观察到蛋白质相互作用体发生了明显的变化,特别是核仁蛋白。利用这一知识,我们将其中一种核蛋白,富含亮氨酸重复蛋白 59(LRRC59),整合到 TFAMoplex 中,与 RP3 修饰的系统相比,转染性能得到了显著改善,与原始的、含有 VRK1 的版本相比,也达到了相似的水平。这项研究不仅推进了我们对 TFAMoplex 系统的理解,还为利用蛋白质工程设计有效的基因传递系统提供了更广泛的见解。
J Control Release. 2024-9
Appl Microbiol Biotechnol. 2014-4
DNA Repair (Amst). 2010-8-23
Mol Ther Nucleic Acids. 2025-3-27