Suppr超能文献

Moss-m7G:一种基于基序的可解释深度学习方法用于RNA N7-甲基鸟苷位点预测。

Moss-m7G: A Motif-Based Interpretable Deep Learning Method for RNA N7-Methlguanosine Site Prediction.

作者信息

Zhao Yanxi, Jin Junru, Gao Wenjia, Qiao Jianbo, Wei Leyi

机构信息

School of Software, Shandong University, Jinan 250101, China.

Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China.

出版信息

J Chem Inf Model. 2024 Aug 12;64(15):6230-6240. doi: 10.1021/acs.jcim.4c00802. Epub 2024 Jul 16.

Abstract

N-7methylguanosine (m7G) modification plays a crucial role in various biological processes and is closely associated with the development and progression of many cancers. Accurate identification of m7G modification sites is essential for understanding their regulatory mechanisms and advancing cancer therapy. Previous studies often suffered from insufficient research data, underutilization of motif information, and lack of interpretability. In this work, we designed a novel motif-based interpretable method for m7G modification site prediction, called Moss-m7G. This approach enables the analysis of RNA sequences from a motif-centric perspective. Our proposed word-detection module and motif-embedding module within Moss-m7G extract motif information from sequences, transforming the raw sequences from base-level into motif-level and generating embeddings for these motif sequences. Compared with base sequences, motif sequences contain richer contextual information, which is further analyzed and integrated through the Transformer model. We constructed a comprehensive m7G data set to implement the training and testing process to address the data insufficiency noted in prior research. Our experimental results affirm the effectiveness and superiority of Moss-m7G in predicting m7G modification sites. Moreover, the introduction of the word-detection module enhances the interpretability of the model, providing insights into the predictive mechanisms.

摘要

N-7甲基鸟苷(m7G)修饰在各种生物过程中起着至关重要的作用,并且与许多癌症的发生和发展密切相关。准确识别m7G修饰位点对于理解其调控机制和推进癌症治疗至关重要。以往的研究常常存在研究数据不足、基序信息利用不充分以及缺乏可解释性等问题。在这项工作中,我们设计了一种基于基序的可解释方法来预测m7G修饰位点,称为Moss-m7G。这种方法能够从以基序为中心的角度分析RNA序列。我们在Moss-m7G中提出的词检测模块和基序嵌入模块从序列中提取基序信息,将原始序列从碱基水平转换为基序水平,并为这些基序序列生成嵌入。与碱基序列相比,基序序列包含更丰富的上下文信息,通过Transformer模型对其进行进一步分析和整合。我们构建了一个综合的m7G数据集来实施训练和测试过程,以解决先前研究中指出的数据不足问题。我们的实验结果证实了Moss-m7G在预测m7G修饰位点方面的有效性和优越性。此外,词检测模块的引入增强了模型的可解释性,为预测机制提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验