School of Mathematics and Statistics, Xi'an Jiaotong University, XJTU, Xian, Shaanxi 710049, China.
Department of Statistics, University of Wah, Taxila, Punjab 47040, Pakistan.
Int J Qual Health Care. 2024 Jul 19;36(3). doi: 10.1093/intqhc/mzae060.
Control charts, used in healthcare operations to monitor process stability and quality, are essential for ensuring patient safety and improving clinical outcomes. This comprehensive research study aims to provide a thorough understanding of the role of control charts in healthcare quality monitoring and future perspectives by utilizing a dual methodology approach involving a systematic review and a pioneering bibliometric analysis. A systematic review of 73 out of 223 articles was conducted, synthesizing existing literature (1995-2023) and revealing insights into key trends, methodological approaches, and emerging themes of control charts in healthcare. In parallel, a bibliometric analysis (1990-2023) on 184 articles gathered from Web of Science and Scopus was performed, quantitatively assessing the scholarly landscape encompassing control charts in healthcare. Among 25 countries, the USA is the foremost user of control charts, accounting for 33% of all applications, whereas among 14 health departments, epidemiology leads with 28% of applications. The practice of control charts in health monitoring has increased by more than one-third during the last 3 years. Globally, exponentially weighted moving average charts are the most popular, but interestingly the USA remained the top user of Shewhart charts. The study also uncovers a dynamic landscape in healthcare quality monitoring, with key contributors, research networks, research hotspot tendencies, and leading countries. Influential authors, such as J.C. Benneyan, W.H. Woodall, and M.A. Mohammed played a leading role in this field. In-countries networking, USA-UK leads the largest cluster, while other clusters include Denmark-Norway-Sweden, China-Singapore, and Canada-South Africa. From 1990 to 2023, healthcare monitoring evolved from studying efficiency to focusing on conditional monitoring and flowcharting, with human health, patient safety, and health surveys dominating 2011-2020, and recent years emphasizing epidemic control, COronaVIrus Disease of 2019 (COVID-19) statistical process control, hospitals, and human health monitoring using control charts. It identifies a transition from conventional to artificial intelligence approaches, with increasing contributions from machine learning and deep learning in the context of Industry 4.0. New researchers and journals are emerging, reshaping the academic context of control charts in healthcare. Our research reveals the evolving landscape of healthcare quality monitoring, surpassing traditional reviews. We uncover emerging trends, research gaps, and a transition in leadership from established contributors to newcomers amidst technological advancements. This study deepens the importance of control charts, offering insights for healthcare professionals, researchers, and policymakers to enhance healthcare quality. Future challenges and research directions are also provided.
控制图在医疗保健运营中用于监测过程稳定性和质量,对于确保患者安全和改善临床结果至关重要。本研究采用系统评价和开创性文献计量分析相结合的双重方法,旨在通过利用控制图在医疗保健质量监测中的作用的综合研究,提供对控制图在医疗保健中的作用的全面理解和未来展望。对 73 篇文章中的 223 篇文章进行了系统评价,综合了现有文献(1995-2023 年),并揭示了控制图在医疗保健中的关键趋势、方法方法和新兴主题的见解。同时,对来自 Web of Science 和 Scopus 的 184 篇文章进行了文献计量分析(1990-2023 年),定量评估了控制图在医疗保健中的学术领域。在 25 个国家中,美国是控制图的主要使用者,占所有应用的 33%,而在 14 个卫生部门中,流行病学以 28%的应用位居首位。过去 3 年来,控制图在健康监测中的应用增加了三分之一以上。全球范围内,指数加权移动平均图最为流行,但有趣的是,美国仍然是谢哈特图的最大用户。该研究还揭示了医疗保健质量监测领域的动态景观,包括主要贡献者、研究网络、研究热点趋势和领先国家。有影响力的作者,如 J.C. Benneyan、W.H. Woodall 和 M.A. Mohammed 在该领域发挥了主导作用。在国内网络方面,美国-英国处于领先地位,最大的集群,而其他集群包括丹麦-挪威-瑞典、中国-新加坡和加拿大-南非。从 1990 年到 2023 年,医疗保健监测从研究效率演变为关注条件监测和流程图,2011-2020 年以人类健康、患者安全和健康调查为主导,近年来强调疫情控制、2019 年冠状病毒病(COVID-19)统计过程控制、医院以及使用控制图的人类健康监测。它确定了从传统方法到人工智能方法的转变,机器学习和深度学习在工业 4.0 背景下的贡献越来越大。新的研究人员和期刊正在出现,正在重塑医疗保健控制图的学术环境。我们的研究揭示了医疗保健质量监测的不断发展的格局,超越了传统的综述。我们揭示了新兴趋势、研究差距以及在技术进步背景下,从老牌贡献者向新进入者的领导力转变。本研究加深了控制图的重要性,为医疗保健专业人员、研究人员和政策制定者提供了提高医疗保健质量的见解。还提供了未来的挑战和研究方向。
Int J Qual Health Care. 2024-7-19
Early Hum Dev. 2020-11
Comput Methods Programs Biomed. 2023-4
Int J Environ Res Public Health. 2022-12-22
Front Biosci (Landmark Ed). 2022-8-31
Cochrane Database Syst Rev. 2022-2-1
Health Res Policy Syst. 2025-8-25