Suppr超能文献

利用供体管理目标登记队列中的供体重症监护数据,开发改良的 Scientific Registry of Transplant Recipients (SRTR) 死亡供体心脏产量模型。

Development of an improved Scientific Registry of Transplant Recipients deceased donor heart yield model using donor critical care data from the Donor Management Goal Registry cohort.

机构信息

Department of Surgery, Oregon Health & Science University, Portland, Oregon.

United Network for Organ Sharing, Richmond, Virginia.

出版信息

Am J Transplant. 2024 Nov;24(11):2108-2120. doi: 10.1016/j.ajt.2024.07.001. Epub 2024 Jul 16.

Abstract

Organ procurement organizations (OPOs) face increasing regulatory scrutiny, and the performance of predictive models used to assess OPO performance is critical. We sought to determine whether adding deceased donor physiological and critical care data to the existing Scientific Registry of Transplant Recipients (SRTR) heart yield model would improve the model's performance. Donor data and heart transplanted (yes/no), the outcome of interest, were obtained from the United Network for Organ Sharing Donor Management Goal (DMG) Registry for 19 141 donors after brain death, from 25 OPOs. The data were split into training and testing portions. Multivariable LASSO regression was used to develop a statistical model incorporating DMG data elements with the existing components of the SRTR model. The DMG + SRTR and SRTR models were applied to the test data to compare the predictive performance of the models. The sensitivity (84%-86%) and specificity (84%-86%) were higher for the DMG + SRTR model compared to the SRTR model (71%-75% and 76%-77%, respectively). For the DMG + SRTR model, the C-statistic was 0.92 to 0.93 compared to 0.80 to 0.81 for the SRTR model. DMG data elements improve the predictive performance of the heart yield model. The addition of DMG data elements to the Organ Procurement and Transplantation Network data collection requirements should be considered.

摘要

器官获取组织(OPO)面临越来越多的监管审查,评估 OPO 绩效的预测模型的性能至关重要。我们试图确定将已故供体的生理和重症监护数据添加到现有的 Scientific Registry of Transplant Recipients(SRTR)心脏产量模型中是否会提高模型的性能。从 United Network for Organ Sharing Donor Management Goal(DMG)登记处获得了来自 25 个 OPO 的 19141 名脑死亡供体的供体数据和心脏移植(是/否),这是感兴趣的结果。数据分为训练和测试部分。多变量 LASSO 回归用于开发一个统计模型,该模型结合了 DMG 数据元素和 SRTR 模型的现有组件。将 DMG+SRTR 和 SRTR 模型应用于测试数据,以比较模型的预测性能。与 SRTR 模型(分别为 71%-75%和 76%-77%)相比,DMG+SRTR 模型的敏感性(84%-86%)和特异性(84%-86%)更高。对于 DMG+SRTR 模型,C 统计量为 0.92 至 0.93,而对于 SRTR 模型为 0.80 至 0.81。DMG 数据元素提高了心脏产量模型的预测性能。应考虑将 DMG 数据元素添加到器官获取和移植网络数据收集要求中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验