Suppr超能文献

关于根据相关权函数定义的奥利奇类。

On Orlicz classes defined in terms of associated weight functions.

作者信息

Schindl Gerhard

机构信息

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.

出版信息

Mon Hefte Math. 2024;204(4):919-968. doi: 10.1007/s00605-024-01991-x. Epub 2024 May 28.

Abstract

N-functions and their growth and regularity properties are crucial in order to introduce and study Orlicz classes and Orlicz spaces. We consider N-functions which are given in terms of so-called associated weight functions. These functions are frequently appearing in the theory of ultradifferentiable function classes and in this setting additional information is available since associated weight functions are defined in terms of a given weight sequence. We express and characterize several known properties for N-functions purely in terms of weight sequences which allows to construct (counter-) examples. Moreover, we study how for abstractly given N-functions this framework becomes meaningful and finally we establish a connection between the complementary N-function and the recently introduced notion of the so-called dual sequence.

摘要

为了引入和研究奥利奇类与奥利奇空间,N函数及其增长和正则性性质至关重要。我们考虑通过所谓的关联权函数给出的N函数。这些函数在超可微函数类理论中经常出现,并且在这种情况下可以获得额外信息,因为关联权函数是根据给定的权序列定义的。我们纯粹根据权序列来表达和刻画N函数的几个已知性质,这使得我们能够构造(反)例。此外,我们研究对于抽象给出的N函数,这个框架如何变得有意义,最后我们在互补N函数和最近引入的所谓对偶序列的概念之间建立联系。

相似文献

1
On Orlicz classes defined in terms of associated weight functions.关于根据相关权函数定义的奥利奇类。
Mon Hefte Math. 2024;204(4):919-968. doi: 10.1007/s00605-024-01991-x. Epub 2024 May 28.
2
Ultradifferentiable classes of entire functions.整函数的超可微类。
Adv Oper Theory. 2023;8(4):67. doi: 10.1007/s43036-023-00294-6. Epub 2023 Sep 21.
9
The Bennett-Orlicz Norm.贝内特 - 奥利奇范数。
Sankhya Ser A. 2017 Aug;79(2):355-383. doi: 10.1007/s13171-017-0108-4. Epub 2017 May 30.
10
Ultradifferentiable CR Manifolds.超可微CR流形
J Geom Anal. 2020;30(3):3064-3098. doi: 10.1007/s12220-019-00191-6. Epub 2019 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验