Li Yaoying, Yang Ruoxi, Xie Jiawei, Li Jia, Huang Haifu, Liang Xianqing, Huang Dan, Lan Zhiqiang, Liu Haizhen, Li Guangxu, Xu Shuaikai, Guo Jin, Zhou Wenzheng
Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China.
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China.
ACS Appl Mater Interfaces. 2024 Jul 31;16(30):39771-39783. doi: 10.1021/acsami.4c04919. Epub 2024 Jul 19.
We successfully synthesized hybrid MXene-K-CNT composites composed of alkalized two-dimensional (2D) metal carbide and carbon nanotubes (CNTs), which were employed as host materials for lithium-sulfur (Li-S) battery cathodes. The unique three-dimensional (3D) intercalated structure through electrostatic interactions by K ions in conjunction with the scaffolding effect provided by CNTs effectively inhibited the self-stacking of MXene nanosheets, resulting in an enhanced specific surface area (SSA) and ion transport capability. Moreover, the addition of CNTs and -grown TiO considerably improved the conductivity of the cathode material. K ion etching created a more hierarchical porous structure in MXene, which further enhanced the SSA. The 3D framework effectively confined S embedded between nanosheet layers and suppressed volume changes of the cathode composite during charging/discharging processes. This combination of CNTs and alkalized nanosheets functioned as a physical and chemical dual adsorption system for lithium polysulfides (LiPSs). When subjected to a high current at 1.0C, S@MXene-K-0.5CNT with S-loaded of 1.2 mg cm had an initial capacity of 919.6 mAh g and capacity decay rate of merely 0.052% per cycle after 1000 cycles. Moreover, S@MXene-K-0.5CNT maintained good cycling stability even at a high current of up to 5.0C. These impressive results highlight the potential of alkalized 2D MXene nanosheets intercalated with CNTs as highly promising cathode materials for Li-S batteries. The study findings also have prospects for the development of next-generation Li-S batteries with high energy density and prolonged lifespans.
我们成功合成了由碱化二维(2D)金属碳化物和碳纳米管(CNT)组成的混合MXene-K-CNT复合材料,将其用作锂硫(Li-S)电池阴极的主体材料。通过K离子的静电相互作用形成的独特三维(3D)插层结构,结合CNT提供的支架效应,有效抑制了MXene纳米片的自堆叠,从而提高了比表面积(SSA)和离子传输能力。此外,CNT的添加和TiO的生长显著提高了阴极材料的导电性。K离子蚀刻在MXene中形成了更具层次的多孔结构,进一步提高了SSA。3D框架有效地限制了嵌入纳米片层之间的S,并抑制了阴极复合材料在充电/放电过程中的体积变化。CNT和碱化纳米片的这种组合作为多硫化锂(LiPSs)的物理和化学双重吸附系统。当在1.0C的高电流下进行测试时,硫负载量为1.2 mg cm的S@MXene-K-0.5CNT的初始容量为919.6 mAh g,在1000次循环后,容量衰减率仅为每循环0.052%。此外,即使在高达5.0C的高电流下,S@MXene-K-0.5CNT仍保持良好的循环稳定性。这些令人印象深刻的结果突出了插层有CNT的碱化二维MXene纳米片作为Li-S电池极具前景的阴极材料的潜力。该研究结果也为开发具有高能量密度和长寿命的下一代Li-S电池带来了希望。