Zhou Wenya, Chen Linrong, Li Haoze, Wu Min, Liang Mengke, Liu Qian, Wu Wei, Jiang Xiqun, Zhen Xu
MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
Department of Urology, Tianjin First Central Hospital, Tianjin 300192, P. R. China.
ACS Nano. 2024 Jul 21. doi: 10.1021/acsnano.4c05443.
Photodynamic therapy (PDT) emerges as a promising strategy for combating bacteria with minimal drug resistance. However, a significant hurdle lies in the ineffectiveness of most photosensitizers against Gram-negative bacteria, primarily attributable to their characteristic impermeable outer membrane (OM) barrier. To tackle this obstacle, we herein report an amphipathic peptide-photosensitizer conjugate (PPC) with intrinsic outer membrane disruption capability to enhance PDT efficiency against Gram-negative bacteria. PPC is constructed by conjugating a hydrophilic ultrashort cationic peptide to a hydrophobic photosensitizer. PPC could efficiently bind to the OM of Gram-negative bacteria through electrostatic adsorption, and subsequently disrupt the structural integrity of the OM. Mechanistic investigations revealed that PPC triggers membrane disruption by binding to both lipopolysaccharide (LPS) and phospholipid leaflet in the OM, enabling effective penetration of PPC into the Gram-negative bacteria interior. Upon light irradiation, PPC inside bacteria generates singlet oxygen not only to effectively decrease the survival of Gram-negative bacteria and to nearly zero in vitro, but also successfully cure the full-thickness skin infection and bacterial keratitis (BK) induced by in animal models. Thus, this study provides a broad-spectrum antibacterial phototherapeutic design strategy by the synergistic action of membrane disruption and PDT to combat Gram-negative bacteria.
光动力疗法(PDT)作为一种对抗耐药性极小的细菌的有前景的策略而出现。然而,一个重大障碍在于大多数光敏剂对革兰氏阴性菌无效,这主要归因于它们具有特征性的不可渗透的外膜(OM)屏障。为了解决这一障碍,我们在此报告一种具有固有外膜破坏能力的两亲性肽 - 光敏剂缀合物(PPC),以提高对革兰氏阴性菌的光动力疗法效率。PPC是通过将亲水性超短阳离子肽与疏水性光敏剂缀合而构建的。PPC可通过静电吸附有效地结合到革兰氏阴性菌的外膜上,并随后破坏外膜的结构完整性。机理研究表明,PPC通过与外膜中的脂多糖(LPS)和磷脂小叶结合来触发膜破坏,从而使PPC能够有效地渗透到革兰氏阴性菌内部。在光照下,细菌内部的PPC产生单线态氧,不仅有效地降低了革兰氏阴性菌的存活率,在体外几乎降至零,而且还成功治愈了动物模型中由[未提及的细菌]引起的全层皮肤感染和细菌性角膜炎(BK)。因此,本研究通过膜破坏和光动力疗法的协同作用提供了一种对抗革兰氏阴性菌的广谱抗菌光疗设计策略。