Suppr超能文献

阳离子空位使锂阴极中的阴离子发生氧化还原反应。

Cation Vacancies Enable Anion Redox in Li Cathodes.

作者信息

Kim Seong Shik, Kitchaev Daniil A, Patheria Eshaan S, Morrell Colin T, Qian Michelle D, Andrews Jessica L, Yan Qizhang, Ko Shu-Ting, Luo Jian, Melot Brent C, Van der Ven Anton, See Kimberly A

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Materials Department, University of California, Santa Barbara, California 93106, United States.

出版信息

J Am Chem Soc. 2024 Jul 31;146(30):20951-20962. doi: 10.1021/jacs.4c05769. Epub 2024 Jul 22.

Abstract

Conventional Li-ion battery intercalation cathodes leverage charge compensation that is formally associated with redox on the transition metal. Employing the anions in the charge compensation mechanism, so-called anion redox, can yield higher capacities beyond the traditional limitations of intercalation chemistry. Here, we aim to understand the structural considerations that enable anion oxidation and focus on processes that result in structural changes, such as the formation of persulfide bonds. Using a Li-rich metal sulfide as a model system, we present both first-principles simulations and experimental data that show that cation vacancies are required for anion oxidation. First-principles simulations show that the oxidation of sulfide to persulfide only occurs when a neighboring vacancy is present. To experimentally probe the role of vacancies in anion redox processes, we introduce vacancies into the LiTiS phase while maintaining a high valency of Ti. When the cation sublattice is fully occupied and no vacancies can be formed through transition metal oxidation, the material is electrochemically inert. Upon introduction of vacancies, the material can support high degrees of anion redox, even in the absence of transition metal oxidation. The model system offers fundamental insights to deepen our understanding of structure-property relationships that govern reversible anion redox in sulfides and demonstrates that cation vacancies are required for anion oxidation, in which persulfides are formed.

摘要

传统的锂离子电池插层阴极利用与过渡金属上的氧化还原正式相关的电荷补偿。在电荷补偿机制中采用阴离子,即所谓的阴离子氧化还原,可以产生超出插层化学传统限制的更高容量。在这里,我们旨在了解能够实现阴离子氧化的结构因素,并关注导致结构变化的过程,例如过硫化物键的形成。使用富锂金属硫化物作为模型系统,我们展示了第一性原理模拟和实验数据,这些数据表明阳离子空位是阴离子氧化所必需的。第一性原理模拟表明,只有当存在相邻空位时,硫化物才会氧化为过硫化物。为了通过实验探究空位在阴离子氧化还原过程中的作用,我们在保持钛的高价态的同时,将空位引入到LiTiS相中。当阳离子亚晶格被完全占据且无法通过过渡金属氧化形成空位时,该材料在电化学上是惰性的。引入空位后,即使在没有过渡金属氧化的情况下,该材料也能够支持高度的阴离子氧化还原。该模型系统提供了基本的见解,以加深我们对控制硫化物中可逆阴离子氧化还原的结构-性能关系的理解,并证明阳离子空位是阴离子氧化形成过硫化物所必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d9/11295190/14efac7c1ca4/ja4c05769_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验