Chang Bin, Jiang Bing-Huang, Chen Chih-Ping, Chen Kai, Chen Bo-Han, Tan Shaun, Lu Tzu-Ching, Tsao Cheng-Si, Su Yu-Wei, Yang Shang-Da, Chen Cheng-Sheng, Wei Kung-Hwa
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41244-41256. doi: 10.1021/acsami.4c08868. Epub 2024 Jul 23.
In pursuing high stability and power conversion efficiency for organic photovoltaics (OPVs), a sequential deposition (SD) approach to fabricate active layers with p-i-n structures (where p, i, and n represent the electron donor, mixed donor:acceptor, and electron acceptor regions, respectively, distinctively different from the bulk heterojunction (BHJ) structure) has emerged. Here, we present a novel approach that by incorporating two polymer donors, and , and one small-molecule acceptor, , into the active layer with sequential deposition, we formed a device with nanometer-scale twin p-i-n structured active layer. The twin p-i-n device involved first depositing a blend under layer and then a top layer and exhibited an improved power conversion efficiency (PCE) value of 18.6%, as compared to the 16.4% for the control BHJ device or 16.6% for the single p-i-n device. The PCE enhancement resulted mainly from the twin p-i-n active layer's multiple nanoscale charge carrier pathways that contributed to an improved fill factor and faster photocurrent generation based on transient absorption studies. The film possessed a vertical twin p-i-n morphology that was revealed through secondary ion mass spectrometry and synchrotron grazing-incidence small-angle X-ray scattering analyses. The thermal stability () at 85 °C of the twin p-i-n device surpassed that of the single p-i-n devices (906 vs 196 h). This approach of providing a twin p-i-n structure in the active layer can lead to substantial enhancements in both the PCE and stability of organic photovoltaics, laying a solid foundation for future commercialization of the organic photovoltaics technology.
为了实现有机光伏电池(OPV)的高稳定性和功率转换效率,一种用于制造具有p-i-n结构活性层的顺序沉积(SD)方法应运而生(其中p、i和n分别代表电子供体、混合供体:受体和电子受体区域,与体异质结(BHJ)结构明显不同)。在此,我们提出一种新颖的方法,即通过顺序沉积将两种聚合物供体和一种小分子受体纳入活性层,形成了具有纳米级双p-i-n结构活性层的器件。双p-i-n器件首先沉积混合底层,然后沉积顶层,与对照BHJ器件的16.4%或单p-i-n器件的16.6%相比,其功率转换效率(PCE)值提高到了18.6%。基于瞬态吸收研究,PCE的提高主要源于双p-i-n活性层的多个纳米级电荷载流子路径,这有助于提高填充因子并加快光电流的产生。通过二次离子质谱和同步辐射掠入射小角X射线散射分析揭示,薄膜具有垂直双p-i-n形态。双p-i-n器件在85°C下的热稳定性()超过了单p-i-n器件(906对196小时)。这种在活性层中提供双p-i-n结构的方法可以显著提高有机光伏电池的PCE和稳定性,为有机光伏技术的未来商业化奠定坚实基础。