Akpan Emmanuel Isaac, Mohamadreza Nasirzade Tabrizi, Pirro Claudius, Wetzel Bernd
Department of Material Science, Leibniz-Institut für Verbundwerkstoffe GmbH, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau Kaiserslautern 67663, Germany.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41390-41399. doi: 10.1021/acsami.4c03707. Epub 2024 Jul 23.
Recovery and reuse of bulk waste wood are particularly challenging because of usage defects and contaminations. Here, we present a robust and efficient strategy for regenerating used wood veneers into high-performance structural materials through micro/nano interface manipulation. Our approach involves using cellulose-based interlayers to bind together two waste wood plates without an external adhesive by partially dissolving and regenerating the interlayer using a solution of ionic liquids and dimethyl sulfoxide. The mechanical properties of the regenerated wood exceed that of natural wood, displaying over a 16 and 20 times increase in transverse tensile strength and modulus, respectively, and 4-6 times improvement in longitudinal tensile strength and modulus. Nanoscale mechanical analyses show that the improvement is possible as a result of several factors, including the robust network structure of the interlayer, the good adhesion at the wood-interlayer interface, the compacted wood structure, and the low stiffness and deformation gradients between the interlayer and the wood structure. The interlayers can be created from waste papers and wood particles by taking advantage of the nanofibrillar structure of cellulose.
由于使用缺陷和污染问题,大量废弃木材的回收和再利用极具挑战性。在此,我们提出了一种稳健且高效的策略,通过微/纳界面操控将废旧木单板再生为高性能结构材料。我们的方法是使用基于纤维素的中间层,通过用离子液体和二甲基亚砜溶液部分溶解并再生中间层,在不使用外部粘合剂的情况下将两块废木板粘合在一起。再生木材的力学性能超过天然木材,横向拉伸强度和模量分别提高了16倍和20倍以上,纵向拉伸强度和模量提高了4至6倍。纳米级力学分析表明,这种性能提升得益于多个因素,包括中间层稳健的网络结构、木材与中间层界面处良好的粘附性、致密的木材结构以及中间层与木材结构之间较低的刚度和变形梯度。利用纤维素的纳米纤维结构,中间层可以由废纸和木材颗粒制成。