Suppr超能文献

标准化均数差的精确贝叶斯元分析模型及其同时可信区间。

An Exact Bayesian Model for Meta-Analysis of the Standardized Mean Difference with Its Simultaneous Credible Intervals.

机构信息

University of Maine, Orono, Maine, USA.

Sam Houston State University, Huntsville, Texas, USA.

出版信息

Multivariate Behav Res. 2024 Sep-Oct;59(5):1058-1076. doi: 10.1080/00273171.2024.2358233. Epub 2024 Jul 23.

Abstract

While Bayesian methodology is increasingly favored in behavioral research for its clear probabilistic inference and model structure, its widespread acceptance as a standard meta-analysis approach remains limited. Although some conventional Bayesian hierarchical models are frequently used for analysis, their performance has not been thoroughly examined. This study evaluates two commonly used Bayesian models for meta-analysis of standardized mean difference and identifies significant issues with these models. In response, we introduce a new Bayesian model equipped with novel features that address existing model concerns and a broader limitation of the current Bayesian meta-analysis. Furthermore, we introduce a simple computational approach to construct simultaneous credible intervals for the summary effect and between-study heterogeneity, based on their joint posterior samples. This fully captures the joint uncertainty in these parameters, a task that is challenging or impractical with frequentist models. Through simulation studies rooted in a joint Bayesian/frequentist paradigm, we compare our model's performance against existing ones under conditions that mirror realistic research scenarios. The results reveal that our new model outperforms others and shows enhanced statistical properties. We also demonstrate the practicality of our models using real-world examples, highlighting how our approach strengthens the robustness of inferences regarding the summary effect.

摘要

虽然贝叶斯方法因其清晰的概率推断和模型结构在行为研究中越来越受到青睐,但作为一种标准的荟萃分析方法,其广泛接受程度仍然有限。虽然一些传统的贝叶斯层次模型经常用于分析,但它们的性能尚未得到彻底检查。本研究评估了两种常用于荟萃分析标准化均数差的常用贝叶斯模型,并确定了这些模型的一些重大问题。为此,我们引入了一种新的贝叶斯模型,该模型具有新颖的功能,可以解决现有模型的关注点以及当前贝叶斯荟萃分析的更广泛局限性。此外,我们还引入了一种简单的计算方法,根据联合后验样本为汇总效应和研究间异质性构建同时可信区间。这完全捕捉到了这些参数的联合不确定性,这是频繁主义模型难以或不切实际的任务。通过基于联合贝叶斯/频率主义范式的模拟研究,我们在反映真实研究场景的条件下比较了我们的模型与现有模型的性能。结果表明,我们的新模型优于其他模型,并显示出增强的统计特性。我们还使用实际示例展示了我们模型的实用性,强调了我们的方法如何增强关于汇总效应推断的稳健性。

相似文献

1
An Exact Bayesian Model for Meta-Analysis of the Standardized Mean Difference with Its Simultaneous Credible Intervals.
Multivariate Behav Res. 2024 Sep-Oct;59(5):1058-1076. doi: 10.1080/00273171.2024.2358233. Epub 2024 Jul 23.
2
Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies.
BMC Med Res Methodol. 2019 Jan 11;19(1):16. doi: 10.1186/s12874-018-0618-3.
3
A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data.
Res Synth Methods. 2020 May;11(3):363-378. doi: 10.1002/jrsm.1397. Epub 2020 Feb 20.
4
A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.
Ann Work Expo Health. 2017 Aug 1;61(7):773-783. doi: 10.1093/annweh/wxx046.
5
A Bayesian meta-analytic approach for safety signal detection in randomized clinical trials.
Clin Trials. 2017 Apr;14(2):192-200. doi: 10.1177/1740774516683920. Epub 2017 Jan 6.
6
Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis.
Biom J. 2021 Feb;63(2):394-405. doi: 10.1002/bimj.201900351. Epub 2020 Nov 9.
7
Bayesian estimation in random effects meta-analysis using a non-informative prior.
Stat Med. 2017 Jan 30;36(2):378-399. doi: 10.1002/sim.7156. Epub 2016 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验