Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
Curr Opin Genet Dev. 2024 Aug;87:102234. doi: 10.1016/j.gde.2024.102234. Epub 2024 Jul 22.
Precise temporal and sequential control of gene expression during development and in response to environmental stimuli requires tight regulation of the physical contact between gene regulatory elements and promoters. Current models describing how the genome folds in 3D space to establish these interactions often ignore the role of the most stable structural nuclear feature - the nuclear envelope. While contributions of 3D folding within/between topologically associated domains (TADs) have been extensively described, mechanical contributions from the nuclear envelope can impact enhancer-promoter interactions both directly and indirectly through influencing intra/inter-TAD interactions. Importantly, these nuclear envelope contributions clearly link this mechanism to development and, when defective, to human disease. Here, we discuss evidence for nuclear envelope regulation of tissue-specific enhancer-promoter pairings, potential mechanisms for this regulation, exciting recent findings that other regulatory elements such as microRNAs and long noncoding RNAs are under nuclear envelope regulation, the possible involvement of condensates, and how disruption of this regulation can lead to disease.
在发育过程中以及对环境刺激的反应中,精确的基因表达的时间和顺序控制需要严格调节基因调控元件和启动子之间的物理接触。目前描述基因组如何在 3D 空间折叠以建立这些相互作用的模型通常忽略了最稳定的结构核特征——核膜的作用。虽然已经广泛描述了 3D 折叠在/之间拓扑关联域(TAD)内的作用,但核膜的机械贡献可以通过影响核内/核间 TAD 相互作用直接和间接地影响增强子-启动子相互作用。重要的是,这些核膜的贡献将这种机制与发育联系起来,当出现缺陷时,与人类疾病联系起来。在这里,我们讨论了核膜对组织特异性增强子-启动子配对的调节的证据,这种调节的潜在机制,令人兴奋的最近发现表明其他调节元件,如 microRNAs 和长非编码 RNA 受核膜调节,可能涉及凝聚物,以及这种调节的破坏如何导致疾病。