Suppr超能文献

SiH2+体系非绝热势能面的构建及Si+(2P1/2, 3/2) + H2反应的动力学研究。

Construction of diabatic potential energy surfaces for the SiH2+ system and dynamics studies of the Si+(2P1/2, 3/2) + H2 reaction.

作者信息

Li Wentao, Liang Yongping, Niu Xianghong, He Di, Xing Wei, Zhang Yong

机构信息

Weifang University of Science and Technology, Shouguang 262700, China.

School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

出版信息

J Chem Phys. 2024 Jul 28;161(4). doi: 10.1063/5.0219621.

Abstract

The construction of diabatic potential energy surfaces (PESs) for the SiH2+ system, related to the ground (12A') and excited states (22A'), has been successfully achieved. This was accomplished by utilizing high-level ab initio energy points, employing a neural network fitting method in conjunction with a specifically designed function. The newly constructed diabatic PESs are carefully examined for dynamics calculations of the Si+(2P1/2, 3/2) + H2 reaction. Through time-dependent quantum wave packet calculations, the reaction probabilities, integral cross sections (ICSs), and differential cross sections (DCSs) of the Si+(2P1/2, 3/2) + H2 reaction were reported. The dynamics results indicate that the total ICS is in excellent agreement with experimental data within the collision energy range studied. The results also indicate that the SiH+ ion is hardly formed via the Si+(2P3/2) + H2 reaction. The results from the DCSs suggest that the "complex-forming" reaction mechanism predominates in the low collision energy region. Conversely, the forward abstraction reaction mechanism is dominant in the high collision energy region.

摘要

已成功构建了与基态((1^2A'))和激发态((2^2A'))相关的(SiH_2^+)体系的非绝热势能面(PESs)。这是通过利用高水平的从头算能量点,并结合专门设计的函数采用神经网络拟合方法来实现的。对新构建的非绝热PESs进行了仔细检查,以用于(Si^+(2P_{1/2}, 3/2) + H_2)反应的动力学计算。通过含时量子波包计算,报道了(Si^+(2P_{1/2}, 3/2) + H_2)反应的反应概率、积分截面(ICSs)和微分截面(DCSs)。动力学结果表明,在所研究的碰撞能量范围内,总ICS与实验数据高度吻合。结果还表明,(SiH^+)离子几乎不会通过(Si^+(2P_{3/2}) + H_2)反应形成。DCSs的结果表明,“形成复合物”反应机制在低碰撞能量区域占主导。相反,前向提取反应机制在高碰撞能量区域占主导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验