Suppr超能文献

富含溶剂蒸气膨胀的生物聚合物薄膜的形态特征

Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors.

作者信息

Băbuțan Mihai, Botiz Ioan

机构信息

Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania.

Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.

出版信息

Biomimetics (Basel). 2024 Jun 30;9(7):396. doi: 10.3390/biomimetics9070396.

Abstract

Biopolymers exhibit a large variety of attractive properties including biocompatibility, flexibility, gelation ability, and low cost. Therefore, especially in more recent years, they have become highly suitable for a wider and wider range of applications stretching across several key sectors such as those related to food packaging, pharmaceutic, and medical industries, just to name a few. Moreover, biopolymers' properties are known to be strongly dependent on the molecular arrangements adopted by such chains at the nanoscale and microscale. Fortunately, these arrangements can be altered and eventually optimized through a plethora of more or less efficient polymer processing methods. Here, we used a space-confined solvent vapor annealing (C-SVA) method to subject various biopolymers to rich swelling in solvent vapors in order to favor their further crystallization or self-assembly, with the final aim of obtaining thin biopolymer films exhibiting more ordered chain conformations. The results obtained by atomic force microscopy revealed that while the gelatin biopolymer nucleated and then crystallized into granular compact structures, other biopolymers preferred to self-assemble into (curved) lamellar rows composed of spherical nanoparticles (glycogen and chitosan) or into more complex helix-resembling morphologies (phytagel). The capability of the C-SVA processing method to favor crystallization and to induce self-assembly in various biopolymeric species or even monomeric units further emphasizes its great potential in the future structuring of a variety of biological (macro)molecules.

摘要

生物聚合物具有多种吸引人的特性,包括生物相容性、柔韧性、凝胶化能力和低成本。因此,尤其是近年来,它们已变得非常适合越来越广泛的应用领域,涵盖了几个关键领域,如食品包装、制药和医疗行业等。此外,众所周知,生物聚合物的特性强烈依赖于这些链在纳米级和微米级所采用的分子排列。幸运的是,这些排列可以通过大量或多或少有效的聚合物加工方法进行改变并最终优化。在这里,我们使用空间限制溶剂蒸汽退火(C-SVA)方法使各种生物聚合物在溶剂蒸汽中充分溶胀,以促进它们进一步结晶或自组装,最终目的是获得具有更有序链构象的生物聚合物薄膜。原子力显微镜获得的结果表明,明胶生物聚合物成核然后结晶成颗粒状致密结构,而其他生物聚合物则倾向于自组装成由球形纳米颗粒组成的(弯曲的)层状排列(糖原和壳聚糖)或更复杂的类似螺旋的形态(植物凝胶)。C-SVA加工方法促进各种生物聚合物物种甚至单体单元结晶和诱导自组装的能力进一步强调了其在未来构建各种生物(大)分子方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b34/11274445/807420d20d16/biomimetics-09-00396-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验