Suppr超能文献

基于分层协调的多智能体系统分布式广播控制

Distributed Broadcast Control of Multi-Agent Systems Using Hierarchical Coordination.

作者信息

Hasan Mahmudul, Saifullah Mohammad Khalid, Kamal Md Abdus Samad, Yamada Kou

机构信息

Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.

出版信息

Biomimetics (Basel). 2024 Jul 5;9(7):407. doi: 10.3390/biomimetics9070407.

Abstract

Broadcast control (BC) is a bio-inspired coordination technique for a swarm of agents in which a single coordinator broadcasts an identical scalar signal to all performing agents without discrimination, and the agents make appropriate moves towards the agents' collective optimal state without communicating with one another. The BC technique aims to accomplish a globally assigned task for which BC utilizes a stochastic optimization algorithm to coordinate a group of agents. However, the challenge intensifies as the system becomes larger: it requires a larger number of agents, which protracts the converging time for a single coordinator-based BC model. This paper proposes a revamped version of BC model, which assimilates distributed multiple coordinators to control a larger multi-agent system efficiently in a pragmatic manner. Precisely, in this hierarchical BC scheme, the distributed multiple sub-coordinators broadcast the identical feedback signal to the agents, which they receive from the global coordinator to accomplish the coverage control task of the ordinary agents. The dual role of sub-coordinators is manipulated by introducing weighted averaging of the gradient estimation under the stochastic optimization mechanism. The potency of the proposed model is analyzed with numerical simulation for a coverage control task, and various performance aspects are compared with the typical BC schemes to demonstrate its practicability and performance improvement. Particularly, the proposed scheme shows the same convergence with about 30% less traveling costs, and the near convergence is reached by only about one-third of iteration steps compared to the typical BC.

摘要

广播控制(BC)是一种受生物启发的群体协调技术,用于一群智能体。在该技术中,单个协调器向所有执行智能体无差别地广播相同的标量信号,智能体无需相互通信即可朝着群体的最优状态做出适当移动。BC技术旨在完成全局分配的任务,为此它利用随机优化算法来协调一组智能体。然而,随着系统规模变大,挑战也日益加剧:这需要更多数量的智能体,这会延长基于单个协调器的BC模型的收敛时间。本文提出了一种改进版的BC模型,该模型融合了分布式多个协调器,以务实的方式有效控制更大规模的多智能体系统。具体而言,在这种分层BC方案中,分布式多个子协调器向智能体广播相同的反馈信号,这些信号是它们从全局协调器接收来完成普通智能体的覆盖控制任务的。通过在随机优化机制下引入梯度估计的加权平均来操控子协调器的双重作用。针对覆盖控制任务,通过数值模拟分析了所提模型的效能,并将其与典型的BC方案在多个性能方面进行了比较,以证明其实用性和性能提升。特别是,所提方案显示出相同的收敛性,且行进成本降低约30%,与典型BC相比,仅约三分之一的迭代步数就能达到近似收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验