蛇形机器人动作的神经模拟
Neural Simulation of Actions for Serpentine Robots.
作者信息
Morasso Pietro
机构信息
Center for Human Technologies Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Via Enrico Melen 83, Bldg B, 16152 Genoa, Italy.
出版信息
Biomimetics (Basel). 2024 Jul 7;9(7):416. doi: 10.3390/biomimetics9070416.
The neural or mental simulation of actions is a powerful tool for allowing cognitive agents to develop that are crucial for learning and memorizing key aspects of challenging skills. In previous studies, we developed an approach based on the animation of the redundant human body schema, based on the Passive Motion Paradigm (PMP). In this paper, we show that this approach can be easily extended to hyper-redundant serpentine robots as well as to hybrid configurations where the serpentine robot is functionally integrated with a traditional skeletal infrastructure. A simulation model is analyzed in detail, showing that it incorporates spatio-temporal features discovered in the biomechanical studies of biological hydrostats, such as the elephant trunk or octopus tentacles. It is proposed that such a generative internal model could be the basis for a cognitive architecture appropriate for serpentine robots, independent of the underlying design and control technologies. Although robotic hydrostats have received a lot of attention in recent decades, the great majority of research activities have been focused on the actuation/sensorial/material technologies that can support the design of hyper-redundant soft/serpentine robots, as well as the related control methodologies. The cognitive level of analysis has been limited to motion planning, without addressing synergy formation and mental time travel. This is what this paper is focused on.
对动作进行神经或心理模拟是一种强大的工具,可让认知主体得以发展,这对于学习和记忆具有挑战性技能的关键方面至关重要。在先前的研究中,我们基于被动运动范式(PMP)开发了一种基于冗余人体模型动画的方法。在本文中,我们表明这种方法可以轻松扩展到超冗余蛇形机器人以及蛇形机器人与传统骨骼结构功能集成的混合配置。详细分析了一个模拟模型,结果表明它包含了在生物流体静力学(如象鼻或章鱼触手)的生物力学研究中发现的时空特征。有人提出,这样一种生成性内部模型可以作为适合蛇形机器人的认知架构的基础,而与底层设计和控制技术无关。尽管机器人流体静力学在近几十年受到了很多关注,但绝大多数研究活动都集中在能够支持超冗余软/蛇形机器人设计的驱动/传感/材料技术以及相关控制方法上。认知层面的分析仅限于运动规划,而未涉及协同形成和心理时间旅行。这正是本文所关注的内容。
相似文献
Biomimetics (Basel). 2024-7-7
Front Neurorobot. 2011-12-27
Bioinspir Biomim. 2017-1-23
IEEE Trans Neural Syst Rehabil Eng. 2023
Front Bioeng Biotechnol. 2023-2-21
引用本文的文献
Biomimetics (Basel). 2025-1-2
本文引用的文献
Front Comput Neurosci. 2024-3-22
Front Robot AI. 2023-7-17
Innovation (Camb). 2022-10-3
Front Bioeng Biotechnol. 2022-1-17
Front Robot AI. 2020-12-3
Sci Robot. 2019-8-28
Ann Biomed Eng. 2018-6-11