Guo Mingshuai, Liu Yueren, Xin Yonglei, Xu Likun, Xue Lili, Duan Tigang, Zhao Rongrong, Xuan Junji, Li Li
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China.
Nanomaterials (Basel). 2024 Jul 18;14(14):1219. doi: 10.3390/nano14141219.
Ti/IrO-TaO electrodes are extensively utilized in the electrochemical industries such as copper foil production, cathodic protection, and wastewater treatment. However, their performance degrades rapidly under high current densities and severe oxygen evolution conditions. To address this issue, we have developed a composite anode of Ti/Ta-Ti/IrO-TaO with a Ta-Ti alloy interlayer deposited on a Ti substrate by double-glow plasma surface alloying, and the IrO-TaO surface coating prepared by the traditional thermal decomposition method. This investigation indicates that the electrode with Ta-Ti alloy interlayer reduces the agglomerates of precipitated IrO nanoparticles and refines the grain size of IrO, thereby increasing the number of active sites and enhancing the electrocatalytic activity. Accelerated lifetime tests demonstrate that the Ti/Ta-Ti/IrO-TaO electrode exhibits a much higher stability than the Ti/IrO-TaO electrode. The significant improvement in electrochemical stability is attributed to the Ta-Ti interlayer, which offers high corrosion resistance and effective protection for the titanium substrate.
钛/氧化铱-氧化钽电极广泛应用于铜箔生产、阴极保护和废水处理等电化学工业领域。然而,在高电流密度和严重析氧条件下,它们的性能会迅速下降。为了解决这个问题,我们通过双辉光等离子体表面合金化在钛基体上制备了具有钽-钛合金中间层的钛/钽-钛/氧化铱-氧化钽复合阳极,并采用传统热分解法制备了氧化铱-氧化钽表面涂层。本研究表明,具有钽-钛合金中间层的电极减少了沉淀的氧化铱纳米颗粒的团聚,细化了氧化铱的晶粒尺寸,从而增加了活性位点的数量并提高了电催化活性。加速寿命测试表明,钛/钽-钛/氧化铱-氧化钽电极比钛/氧化铱-氧化钽电极具有更高的稳定性。电化学稳定性的显著提高归因于钽-钛中间层,它为钛基体提供了高耐腐蚀性和有效保护。