Suppr超能文献

共存的单克隆细胞亚群中的信号动力学揭示了对抗癌化合物耐药的机制。

Signaling dynamics in coexisting monoclonal cell subpopulations unveil mechanisms of resistance to anti-cancer compounds.

机构信息

School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA.

Microbiome Analysis Center, George Mason University, Manassas, VA, 20110, USA.

出版信息

Cell Commun Signal. 2024 Jul 26;22(1):377. doi: 10.1186/s12964-024-01742-3.

Abstract

BACKGROUND

Tumor heterogeneity is a main contributor of resistance to anti-cancer targeted agents though it has proven difficult to study. Unfortunately, model systems to functionally characterize and mechanistically study dynamic responses to treatment across coexisting subpopulations of cancer cells remain a missing need in oncology.

METHODS

Using single cell cloning and expansion techniques, we established monoclonal cell subpopulations (MCPs) from a commercially available epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer cell line. We then used this model sensitivity to the EGFR inhibitor osimertinib across coexisting cell populations within the same tumor. Pathway-centered signaling dynamics associated with response to treatment and morphological characteristics of the MCPs were assessed using Reverse Phase Protein Microarray. Signaling nodes differentially activated in MCPs less sensitive to treatment were then pharmacologically inhibited to identify target signaling proteins putatively implicated in promoting drug resistance.

RESULTS

MCPs demonstrated highly heterogeneous sensitivities to osimertinib. Cell viability after treatment increased > 20% compared to the parental line in selected MCPs, whereas viability decreased by 75% in other MCPs. Reduced treatment response was detected in MCPs with higher proliferation rates, EGFR L858R expression, activation of EGFR binding partners and downstream signaling molecules, and expression of epithelial-to-mesenchymal transition markers. Levels of activation of EGFR binding partners and MCPs' proliferation rates were also associated with response to c-MET and IGFR inhibitors.

CONCLUSIONS

MCPs represent a suitable model system to characterize heterogeneous biomolecular behaviors in preclinical studies and identify and functionally test biological mechanisms associated with resistance to targeted therapeutics.

摘要

背景

肿瘤异质性是导致抗癌靶向药物耐药的主要原因,但它很难研究。不幸的是,在肿瘤学中,仍然缺乏一种功能表征和机制研究不同肿瘤细胞亚群对治疗的动态反应的模型系统。

方法

我们使用单细胞克隆和扩增技术,从一种商业上可用的表皮生长因子受体(EGFR)突变型非小细胞肺癌细胞系中建立了单克隆细胞亚群(MCPs)。然后,我们利用该模型来评估 EGFR 抑制剂奥希替尼在同一肿瘤内共存细胞群体中的敏感性。使用反相蛋白微阵列评估与治疗反应相关的通路中心信号动力学和 MCP 的形态特征。然后,通过药理学抑制对治疗反应不敏感的 MCPs 中差异激活的信号节点,鉴定可能参与促进耐药性的靶信号蛋白。

结果

MCP 对奥希替尼表现出高度异质性的敏感性。在某些 MCP 中,处理后的细胞活力比亲本系增加了>20%,而在其他 MCP 中则降低了 75%。在增殖率较高、EGFR L858R 表达增加、EGFR 结合伙伴和下游信号分子激活以及上皮-间充质转化标志物表达降低的 MCP 中,检测到治疗反应降低。EGFR 结合伙伴的激活水平和 MCP 的增殖率也与 c-MET 和 IGFR 抑制剂的反应相关。

结论

MCP 是一种合适的模型系统,可以在临床前研究中表征异质生物分子行为,并鉴定和功能测试与靶向治疗耐药相关的生物学机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2bb/11282632/83ec2acfc508/12964_2024_1742_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验