Educational Technology, Indian Institute of Technology Bombay, Mumbai 400076, India.
Sensors (Basel). 2024 Jul 14;24(14):4565. doi: 10.3390/s24144565.
Electrodermal Activity (EDA), which primarily indicates arousal through sympathetic nervous system activity, serves as a tool to measure constructs like engagement, cognitive load, performance, and stress. Despite its potential, empirical studies have often yielded mixed results and found it of limited use. To better understand EDA, we conducted a mixed-methods study in which quantitative EDA profiles and survey data were investigated using qualitative interviews. This study furnishes an EDA dataset measuring the engagement levels of seven participants who watched three videos for 4-10 min. The subsequent interviews revealed five EDA morphologies with varying short-term signatures and long-term trends. We used this dataset to demonstrate the moving average crossover, a novel metric for EDA analysis, in predicting engagement-disengagement dynamics in such data. Our contributions include the creation of the detailed dataset, comprising EDA profiles annotated with qualitative data, the identification of five distinct EDA morphologies, and the proposition of the moving average crossover as an indicator of the beginning of engagement or disengagement in an individual.
皮肤电活动(EDA)主要通过交感神经系统活动来表示唤醒程度,可作为测量参与度、认知负荷、绩效和压力等构念的工具。尽管它具有潜力,但实证研究经常得出相互矛盾的结果,发现其用途有限。为了更好地理解 EDA,我们进行了一项混合方法研究,使用定性访谈研究了定量 EDA 图谱和调查数据。这项研究提供了一个 EDA 数据集,该数据集测量了七名参与者观看三到十分钟的三个视频时的参与水平。随后的访谈揭示了五种具有不同短期特征和长期趋势的 EDA 形态。我们使用该数据集展示了移动平均交叉,这是一种用于 EDA 分析的新指标,用于预测此类数据中的参与度-不参与度动态。我们的贡献包括创建详细的数据集,该数据集包含带有定性数据注释的 EDA 图谱,确定了五种不同的 EDA 形态,并提出了移动平均交叉作为个体参与或不参与的指标。