Suppr超能文献

人工智能辅助检测脑多发性硬化病变可减少放射学报告时间。

AI supported detection of cerebral multiple sclerosis lesions decreases radiologic reporting times.

机构信息

Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany.

Department of Radiology, Bundeswehr Hospital Hamburg, Germany.

出版信息

Eur J Radiol. 2024 Sep;178:111638. doi: 10.1016/j.ejrad.2024.111638. Epub 2024 Jul 17.

Abstract

PURPOSE

Multiple Sclerosis (MS) is a common autoimmune disease of the central nervous system. MRI plays a crucial role in diagnosing as well as in disease and treatment monitoring. Therefore, evaluation of cerebral MRI of MS patients is part of daily clinical routine. A growing number of companies offer commercial software to support the reporting with automated lesion detection. Aim of this study was to evaluate the effect of such a software with AI supported lesion detection to the radiologic reporting.

METHOD

Four radiologist each counted MS-lesions in MRI examinations of 50 patients separated by the locations periventricular, cortical/juxtacortical, infrantentorial and unspecific white matter. After at least six weeks they repeated the evaluation, this time using the AI based software mdbrain for lesion detection. In both settings the required time was documented. Further the radiologists evaluated follow-up MRI of 50 MS-patients concerning new and enlarging lesions in the same manner.

RESULTS

To determine the lesion-load the average reporting time decreased from 286.85 sec to 196.34 sec (p > 0.001). For the evaluation of the follow-up images the reporting time dropped from 196.17 sec to 120.87 sec (p < 0.001). The interrater reliabilities showed no significant differences for the determination of lesion-load (0.83 without vs. 0.8 with software support) and for the detection of new/enlarged lesions (0.92 without vs. 0.82 with software support).

CONCLUSION

For the evaluation of MR images of MS patients, an AI-based support for image-interpretation can significantly decreases reporting times.

摘要

目的

多发性硬化症(MS)是一种常见的中枢神经系统自身免疫性疾病。MRI 在诊断以及疾病和治疗监测中起着至关重要的作用。因此,评估 MS 患者的脑部 MRI 是日常临床常规的一部分。越来越多的公司提供商业软件来支持自动病变检测的报告。本研究的目的是评估具有人工智能支持的病变检测的此类软件对放射学报告的影响。

方法

四位放射科医生分别对 50 名患者的 MRI 检查中的脑室周围、皮质/皮质下、小脑下和非特异性白质部位的 MS 病变进行计数。至少六周后,他们使用基于 AI 的软件 mdbrain 进行病变检测,重复评估。在这两种情况下,都记录了所需的时间。此外,放射科医生以同样的方式评估了 50 名 MS 患者的随访 MRI,以确定新的和扩大的病变。

结果

为了确定病变负荷,报告时间从 286.85 秒平均减少到 196.34 秒(p>0.001)。对于随访图像的评估,报告时间从 196.17 秒减少到 120.87 秒(p<0.001)。病变负荷的测定(无软件支持时的 0.83 与有软件支持时的 0.83)和新/扩大病变的检测(无软件支持时的 0.92 与有软件支持时的 0.82)的组内信度没有显著差异。

结论

对于 MS 患者的 MRI 图像评估,基于人工智能的图像解释支持可以显著减少报告时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验