Suppr超能文献

使用自评问卷的机器学习模型在乳腺癌患者中检测抑郁症的探索

Exploration of a Machine Learning Model Using Self-rating Questionnaires for Detecting Depression in Patients with Breast Cancer.

作者信息

Park Heeseung, Kim Kyungwon, Moon Eunsoo, Lim Hyun Ju, Suh Hwagyu, Kim Kyoung-Eun, Kang Taewoo

机构信息

Breast Cancer Clinic of Busan Cancer Center, Pusan National University Hospital, Busan, Korea.

Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.

出版信息

Clin Psychopharmacol Neurosci. 2024 Aug 31;22(3):466-472. doi: 10.9758/cpn.23.1147. Epub 2024 Mar 20.

Abstract

OBJECTIVE

Given the long-term and severe distress experienced during breast cancer treatment, detecting depression among breast cancer patients is clinically crucial. This study aimed to explore a machine-learning model using self-report questionnaires to screen for depression in patients with breast cancer.

METHODS

A total of 327 patients who visited the breast cancer clinic were included in this study. Depressive symptoms were measured using the Patient Health Questionnaire-9 (PHQ-9), Beck Depression Inventory (BDI), and Hospital Anxiety and Depression Scale (HADS). The depression was evaluated according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition. The prediction model's performance based on supervised machine learning was conducted using MATLAB2022.

RESULTS

The BDI showed an area under the curve (AUC) of 0.785 when using the logistic regression (LR) classifier. The HADS and PHQ-9 showed an AUC of 0.784 and 0.756 when using the linear discriminant analysis, respectively. The combinations of BDI and HADS showed an AUC of 0.812 when using the LR. The combinations of PHQ-9, BDI, and HADS showed an AUC of 0.807 when using LR.

CONCLUSION

The combination model with BDI and HADS in breast cancer patients might be better than the method using a single scale. In future studies, it is necessary to explore strategies that can improve the performance of the model by integrating the method using questionnaires and other methods.

摘要

目的

鉴于乳腺癌治疗期间经历的长期严重痛苦,在乳腺癌患者中检测抑郁症在临床上至关重要。本研究旨在探索一种使用自我报告问卷来筛查乳腺癌患者抑郁症的机器学习模型。

方法

本研究纳入了327名到乳腺癌门诊就诊的患者。使用患者健康问卷-9(PHQ-9)、贝克抑郁量表(BDI)和医院焦虑抑郁量表(HADS)来测量抑郁症状。根据《精神疾病诊断与统计手册》第5版对抑郁症进行评估。使用MATLAB2022对基于监督机器学习的预测模型性能进行分析。

结果

当使用逻辑回归(LR)分类器时,BDI的曲线下面积(AUC)为0.785。当使用线性判别分析时,HADS和PHQ-9的AUC分别为0.784和0.756。当使用LR时,BDI和HADS的组合AUC为0.812。当使用LR时,PHQ-9、BDI和HADS的组合AUC为0.807。

结论

乳腺癌患者中BDI和HADS的组合模型可能优于使用单一量表的方法。在未来的研究中,有必要探索通过整合问卷方法和其他方法来提高模型性能的策略。

相似文献

本文引用的文献

4
Machine Learning on Early Diagnosis of Depression.机器学习在抑郁症早期诊断中的应用
Psychiatry Investig. 2022 Aug;19(8):597-605. doi: 10.30773/pi.2022.0075. Epub 2022 Aug 24.
9
Hospital Anxiety and Depression Scale (HADS) accuracy in cancer patients.医院焦虑抑郁量表(HADS)在癌症患者中的准确性。
Support Care Cancer. 2020 Aug;28(8):3921-3926. doi: 10.1007/s00520-019-05244-8. Epub 2019 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验