Suppr超能文献

煤与生物质的共热解行为:协同效应与动力学分析

Co-pyrolysis Behavior of Coal and Biomass: Synergistic Effect and Kinetic Analysis.

作者信息

Liu Na, Huang He, Huang Xueli, Li Rui, Feng Jun, Wu Yulong

机构信息

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources and Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Urumqi 830046, China.

Beijing Forestry University, Beijing 100083, China.

出版信息

ACS Omega. 2024 Jul 9;9(29):31803-31813. doi: 10.1021/acsomega.4c03053. eCollection 2024 Jul 23.

Abstract

Co-pyrolysis of coal and biomass is an efficient way to utilize resources. This study investigates the co-pyrolysis behavior and kinetics of coal and biomass using thermogravimetric analysis (TGA) and TG-FTIR. Co-pyrolysis of coal and biomass exhibits a synergistic effect. When the biomass is 25%, the weight loss increases, showing a positive synergistic effect. When the biomass is 50%, it exhibits a negative synergistic effect. Increasing the heating rate can promote the generation of a synergistic effect. Co-pyrolysis involves two central pyrolysis stages: stage III (250-380 °C) and stage IV (380-550 °C). Friedman, FWO, KAS, and STA methods are used to calculate the activation energy for stages III and IV. The activation energy ( ) for co-pyrolysis is higher than that for coal or biomass pyrolysis alone. A positive synergistic effect is observed in stage III, while a negative synergistic effect is noted in stage IV. The master curve method determines an accurate reaction order () and pre-exponential factor () value of Coal75-Bio25. In stage III, = 238.81 kJ/mol, = 2.4, = 1.30 × 10 s. In stage IV, = 37 8.01 kJ/mol, = 4.0, = 1.10 × 10 s. The kinetic parameters in stage IV are significantly higher than those in stage III. TG-FTIR is used to analyze the synergistic effect of co-pyrolysis. Compared with coal and biomass pyrolysis separately, the Coal75-Bio25 pyrolysis process releases less CO and more CH. These findings support the synergistic effect of coal and biomass during co-pyrolysis.

摘要

煤与生物质共热解是一种高效的资源利用方式。本研究采用热重分析(TGA)和TG-FTIR研究了煤与生物质的共热解行为及动力学。煤与生物质共热解表现出协同效应。当生物质含量为25%时,失重增加,呈现正协同效应。当生物质含量为50%时,呈现负协同效应。提高加热速率可促进协同效应的产生。共热解包括两个主要热解阶段:阶段III(250-380℃)和阶段IV(380-550℃)。采用Friedman、FWO、KAS和STA方法计算阶段III和阶段IV的活化能。共热解的活化能高于单独煤热解或生物质热解的活化能。在阶段III观察到正协同效应,而在阶段IV观察到负协同效应。主曲线法确定了Coal75-Bio25准确的反应级数和指前因子值。在阶段III, = 238.81 kJ/mol, = 2.4, = 1.30 × 10 s。在阶段IV, = 378.01 kJ/mol, = 4.0, = 1.10 × 10 s。阶段IV的动力学参数显著高于阶段III。TG-FTIR用于分析共热解的协同效应。与单独的煤和生物质热解相比,Coal75-Bio25热解过程释放的CO较少,CH较多。这些发现支持了煤与生物质在共热解过程中的协同效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f42f/11270712/690dc8f2b1f7/ao4c03053_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验