Suppr超能文献

物理化学技术在水中氨氮去除中的应用:系统评价。

Application of physicochemical techniques to the removal of ammonia nitrogen from water: a systematic review.

机构信息

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.

Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.

出版信息

Environ Geochem Health. 2024 Jul 29;46(9):344. doi: 10.1007/s10653-024-02129-6.

Abstract

Ammonia nitrogen is a common pollutant in water and soil, known for its biological toxicity and complex removal process. Traditional biological methods for removing ammonia nitrogen are often inefficient, especially under varying temperature conditions. This study reviews physicochemical techniques for the treatment and recovery of ammonia nitrogen from water. Key methods analyzed include ion exchange, adsorption, membrane separation, struvite precipitation, and advanced oxidation processes (AOPs). Findings indicate that these methods not only remove ammonia nitrogen but also allow for nitrogen recovery. Ion exchange, adsorption, and membrane separation are effective in separating ammonia nitrogen, while AOPs generate reactive species for efficient degradation. Struvite precipitation offers dual benefits of removal and resource recovery. Despite their advantages, these methods face challenges such as secondary pollution and high energy consumption. This paper highlights the development principles, current challenges, and future prospects of physicochemical techniques, emphasizing the need for integrated approaches to enhance ammonia nitrogen removal efficiency.

摘要

氨氮是水和土壤中的常见污染物,具有生物毒性和复杂的去除过程。传统的生物方法去除氨氮往往效率低下,特别是在不同温度条件下。本研究综述了从水中处理和回收氨氮的物理化学技术。分析的关键方法包括离子交换、吸附、膜分离、鸟粪石沉淀和高级氧化工艺 (AOPs)。研究结果表明,这些方法不仅可以去除氨氮,还可以进行氮回收。离子交换、吸附和膜分离在分离氨氮方面非常有效,而 AOPs 则会产生用于有效降解的活性物质。鸟粪石沉淀则具有去除和资源回收的双重效益。尽管这些方法具有优势,但它们也面临着二次污染和高能耗等挑战。本文强调了物理化学技术的发展原则、当前挑战和未来前景,强调需要采用综合方法来提高氨氮去除效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验