Suppr超能文献

黄素酶汞离子还原酶中氧化还原活性二硫键的定向诱变。

Directed mutagenesis of the redox-active disulfide in the flavoenzyme mercuric ion reductase.

作者信息

Schultz P G, Au K G, Walsh C T

出版信息

Biochemistry. 1985 Nov 19;24(24):6840-8. doi: 10.1021/bi00345a016.

Abstract

Mercuric ion reductase, a flavoenzyme with an active site redox-active cystine, Cys135-Cys140, is an unusual enzyme that reduces Hg(II) to Hg(0) with stoichiometric NADPH oxidation. To probe the catalytic mechanism, we have constructed two active site Cys to Ser mutations by oligonucleotide-directed mutagenesis. The native and the Cys135, Ser140 and Ser135, Cys140 mutant enzymes are expressed on an overproducing plasmid and purified to homogeneity by a one-step procedure in high yield. The optical spectra of the mutant proteins are distinct, with the Ser135, Cys140 mutant displaying a thiolate-flavin charge-transfer band (Cys140 pKa = 5.2), confirming that Cys140, not Cys135, is in charge-transfer distance both in this mutant and in two electron reduced native enzyme. The native and both mutant proteins are dimers and are precipitated by antibody to native enzyme. Thiol titrations with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) indicate that both mutants contain three kinetically accessible thiols in both oxidized and reduced states. The native enzyme has two titratable thiols when oxidized and four in the two electron reduced state. The native and two Cys to Ser mutant enzymes show differentiable NADPH-dependent catalytic behavior with Hg(SR)2 (R = CH2CH2OH), Hg(CN)2, DTNB, thio-NADP+, and O2, the most striking of which are the activities toward the Hg(II) complexes and DTNB. Only native enzyme reduces Hg(SR)2. The Ser135, Cys140 enzyme alone shows sustained Hg(CN)2 reduction, whereas the native and Cys135, Ser140 enzymes are rapidly inactivated. DTNB reduction is catalyzed by the native and Cys135, Ser140 enzymes, but not by the Ser135, Cys140 enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

汞离子还原酶是一种黄素酶,其活性位点含有氧化还原活性的胱氨酸(Cys135 - Cys140),是一种不寻常的酶,能以化学计量的NADPH氧化将Hg(II)还原为Hg(0)。为了探究其催化机制,我们通过寡核苷酸定向诱变构建了两个活性位点半胱氨酸突变为丝氨酸的突变体。天然酶以及Cys135、Ser140和Ser135、Cys140突变体酶在过量表达质粒上表达,并通过一步法高产率纯化至均一。突变体蛋白的光谱不同,Ser135、Cys140突变体显示出硫醇 - 黄素电荷转移带(Cys140的pKa = 5.2),证实无论是在该突变体还是在双电子还原的天然酶中,是Cys140而非Cys135处于电荷转移距离。天然酶和两种突变体蛋白均为二聚体,且能被抗天然酶抗体沉淀。用5,5'-二硫代双(2 - 硝基苯甲酸)(DTNB)进行硫醇滴定表明,两种突变体在氧化态和还原态均含有三个动力学可及的硫醇。天然酶在氧化态时有两个可滴定的硫醇,在双电子还原态时有四个。天然酶和两个半胱氨酸突变为丝氨酸的突变体酶对Hg(SR)2(R = CH2CH2OH)、Hg(CN)2、DTNB、硫代NADP + 和O2表现出不同的NADPH依赖性催化行为,其中最显著的是对Hg(II)配合物和DTNB的活性。只有天然酶能还原Hg(SR)2。仅Ser135、Cys140酶能持续还原Hg(CN)2,而天然酶和Cys135、Ser140酶会迅速失活。DTNB的还原由天然酶和Cys135、Ser140酶催化,但不由Ser135、Cys140酶催化。(摘要截短至250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验