Faculty of Business, Accountancy & Law, SEGi University, Petaling Jaya, Malaysia.
Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
PLoS One. 2024 Jul 30;19(7):e0305146. doi: 10.1371/journal.pone.0305146. eCollection 2024.
Global seaport network efficiency can be measured using the Liner Shipping Connectivity Index (LSCI) with Gross Domestic Product. This paper utilizes k-means and hierarchical strategies by leveraging the results obtained from Data Envelopment Analysis (DEA) and Fuzzy Data Envelopment Analysis (FDEA) to cluster 133 countries based on their seaport network efficiency scores. Previous studies have explored hkmeans clustering for traffic, maritime transportation management, swarm optimization, vessel trajectory prediction, vessels behaviours, vehicular ad hoc network etc. However, there remains a notable absence of clustering research specifically addressing the efficiency of global seaport networks. This research proposed hkmeans as the best strategy for the seaport network efficiency clustering where our four newly founded clusters; low connectivity (LC), medium connectivity (MC), high connectivity (HC) and very high connectivity (VHC) are new applications in the field. Using the hkmeans algorithm, 24 countries have been clustered under LC, 47 countries under MC, 40 countries under HC and 22 countries under VHC. With and without a fuzzy dataset distribution, this demonstrates that the hkmeans clustering is consistent and practical to form grouping of general data types. The findings of this research can be useful for researchers, authorities, practitioners and investors in guiding their future analysis, decision and policy makings involving data grouping and prediction especially in the maritime economy and transportation industry.
可以使用国内生产总值(GDP)与班轮航运连通性指数(LSCI)来衡量全球海港网络的效率。本文利用数据包络分析(DEA)和模糊数据包络分析(FDEA)的结果,通过 k-均值和层次策略,根据海港网络效率得分对 133 个国家进行聚类。先前的研究已经探索了用于交通、海上运输管理、群体优化、船舶轨迹预测、船舶行为、车载自组织网络等的 hkmeans 聚类。然而,在全球海港网络效率的聚类方面,仍然缺乏聚类研究。本研究提出 hkmeans 是海港网络效率聚类的最佳策略,其中我们新成立的四个聚类;低连通性(LC)、中连通性(MC)、高连通性(HC)和超高连通性(VHC)是该领域的新应用。使用 hkmeans 算法,24 个国家被聚类到 LC 中,47 个国家被聚类到 MC 中,40 个国家被聚类到 HC 中,22 个国家被聚类到 VHC 中。无论是否存在模糊数据集分布,这都表明 hkmeans 聚类是一致且实用的,可以对一般数据类型进行分组。本研究的结果可以为研究人员、当局、从业者和投资者提供有用的指导,帮助他们在涉及数据分组和预测的未来分析、决策和政策制定中,特别是在海上经济和运输业中,进行分组和预测。