文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症驱动基因的单核苷酸和拷贝数变异可提示多种癌症的药物反应。

Single nucleotide and copy number variants of cancer driver genes inform drug response in multiple cancers.

机构信息

School of Control Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China.

Department of Breast Surgery, Institute of Breast Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.

出版信息

PLoS One. 2024 Jul 31;19(7):e0306343. doi: 10.1371/journal.pone.0306343. eCollection 2024.


DOI:10.1371/journal.pone.0306343
PMID:39083502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11290640/
Abstract

Due to the heterogeneity of cancer, precision medicine has been a major challenge for cancer treatment. Determining medication regimens based on patient genotypes has become a research hotspot in cancer genomics. In this study, we aim to identify key biomarkers for targeted therapies based on single nucleotide variants (SNVs) and copy number variants (CNVs) of genes. The experiment is carried out on 7 cancers on the Encyclopedia of Cancer Cell Lines (CCLE) dataset. Considering the high mutability of driver genes which result in abundant mutated samples, the effect of data sparsity can be eliminated to a large extent. Therefore, we focus on discovering the relationship between driver mutation patterns and three measures of drug response, namely area under the curve (AUC), half maximal effective concentration (EC50), and log2-fold change (LFC). First, multiple statistical methods are applied to assess the significance of difference in drug response between sample groups. Next, for each driver gene, we analyze the extent to which its mutations can affect drug response. Based on the results of multiple hypothesis tests and correlation analyses, our main findings include the validation of several known drug response biomarkers such as BRAF, NRAS, MAP2K1, MAP2K2, and CDKN2A, as well as genes with huge potential to infer drug responses. It is worth emphasizing that we identify a list of genes including SALL4, B2M, BAP1, CCDC6, ERBB4, FOXA1, GRIN2A, and PTPRT, whose impact on drug response spans multiple cancers and should be prioritized as key biomarkers for targeted therapies. Furthermore, based on the statistical p-values and correlation coefficients, we construct gene-drug sensitivity maps for cancer drug recommendation. In this work, we show that driver mutation patterns could be used to tailor therapeutics for precision medicine.

摘要

由于癌症的异质性,精准医学一直是癌症治疗的一大挑战。根据患者基因型确定治疗方案已成为癌症基因组学的研究热点。在这项研究中,我们旨在基于基因的单核苷酸变体(SNVs)和拷贝数变异(CNVs)来识别靶向治疗的关键生物标志物。该实验是在癌症细胞系百科全书(CCLE)数据集上的 7 种癌症上进行的。考虑到驱动基因的高突变率导致大量突变样本,数据稀疏性的影响可以在很大程度上消除。因此,我们专注于发现驱动突变模式与三种药物反应测量值(即曲线下面积(AUC)、半最大有效浓度(EC50)和对数倍变化(LFC))之间的关系。首先,应用多种统计方法评估药物反应在样本组之间差异的显著性。接下来,对于每个驱动基因,我们分析其突变对药物反应的影响程度。基于多假设检验和相关分析的结果,我们的主要发现包括验证了一些已知的药物反应生物标志物,如 BRAF、NRAS、MAP2K1、MAP2K2 和 CDKN2A,以及具有巨大潜力推断药物反应的基因。值得强调的是,我们确定了一系列基因,包括 SALL4、B2M、BAP1、CCDC6、ERBB4、FOXA1、GRIN2A 和 PTPRT,它们对药物反应的影响跨越多种癌症,应优先作为靶向治疗的关键生物标志物。此外,根据统计 p 值和相关系数,我们构建了用于癌症药物推荐的基因-药物敏感性图。在这项工作中,我们表明驱动突变模式可用于为精准医学定制治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/9d51ebda5a07/pone.0306343.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/bcfffdc46bf5/pone.0306343.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/e5e0c3f47070/pone.0306343.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/42ac3ed5a3cd/pone.0306343.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/64d4e4e8b253/pone.0306343.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/e62b283085bf/pone.0306343.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/f580a0081796/pone.0306343.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/8d7562a0c93d/pone.0306343.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/9d51ebda5a07/pone.0306343.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/bcfffdc46bf5/pone.0306343.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/e5e0c3f47070/pone.0306343.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/42ac3ed5a3cd/pone.0306343.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/64d4e4e8b253/pone.0306343.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/e62b283085bf/pone.0306343.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/f580a0081796/pone.0306343.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/8d7562a0c93d/pone.0306343.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df38/11290640/9d51ebda5a07/pone.0306343.g008.jpg

相似文献

[1]
Single nucleotide and copy number variants of cancer driver genes inform drug response in multiple cancers.

PLoS One. 2024

[2]
Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma.

BMC Med Genomics. 2019-1-31

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

PLoS One. 2015-7-1

[5]
Next generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: new routes to targeted therapies.

Oncotarget. 2017-1-31

[6]
The identification of patient-specific mutations reveals dual pathway activation in most patients with melanoma and activated receptor tyrosine kinases in BRAF/NRAS wild-type melanomas.

Cancer. 2018-12-18

[7]
Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response.

JAMA Oncol. 2015-7

[8]
The Integrated Analyses of Driver Genes Identify Key Biomarkers in Thyroid Cancer.

Technol Cancer Res Treat. 2020

[9]
Discovery of actionable genetic alterations with targeted panel sequencing in children with relapsed or refractory solid tumors.

PLoS One. 2019-11-20

[10]
Development and clinical application of an integrative genomic approach to personalized cancer therapy.

Genome Med. 2016-6-1

引用本文的文献

[1]
Machine learning in oncological pharmacogenomics: advancing personalized chemotherapy.

Funct Integr Genomics. 2024-10-4

本文引用的文献

[1]
DRdriver: identifying drug resistance driver genes using individual-specific gene regulatory network.

Brief Bioinform. 2023-3-19

[2]
Gamma distribution based predicting model for breast cancer drug response based on multi-layer feature selection.

Front Genet. 2023-2-2

[3]
Clonal somatic copy number altered driver events inform drug sensitivity in high-grade serous ovarian cancer.

Nat Commun. 2022-10-26

[4]
Machine learning approaches to drug response prediction: challenges and recent progress.

NPJ Precis Oncol. 2020-6-15

[5]
The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers.

Nat Rev Cancer. 2018-11

[6]
A Convergence-Based Framework for Cancer Drug Resistance.

Cancer Cell. 2018-5-14

[7]
Next-generation sequencing reveals novel resistance mechanisms and molecular heterogeneity in EGFR-mutant non-small cell lung cancer with acquired resistance to EGFR-TKIs.

Lung Cancer. 2017-9-12

[8]
OncoKB: A Precision Oncology Knowledge Base.

JCO Precis Oncol. 2017-7

[9]
Current Trends in Drug Sensitivity Prediction.

Curr Pharm Des. 2016

[10]
T test as a parametric statistic.

Korean J Anesthesiol. 2015-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索