Ju Dongyeol, Lee Jungwoo, Kim Sungjun
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
Nanoscale. 2024 Aug 15;16(32):15330-15342. doi: 10.1039/d4nr02132k.
The increasing demand for energy-efficient data processing leads to a growing interest in neuromorphic computing that aims to emulate cerebral functions. This approach offers cost-effective and rapid parallel data processing, surpassing the limitations of the conventional von Neumann architecture. Key to this emulation is the development of memristors that mimic biological synapses. Recently, research efforts have focused on the incorporation of nociceptors-sensory neurons capable of detecting external stimuli-into memristors for applications in robotics and artificial intelligence. This integration enables memristors to adapt to various circumstances while remaining cost-effective. A nonfilamentary gradual resistive switching memristor is utilized to implement artificial nociceptor and synaptic behaviors. The fabricated Pt/indium gallium zinc oxide (IGZO)/SnO/TiN device exhibits essential properties of biological nociceptors, including threshold response, no-adaptation, relaxation, sensitization, and recovery. Furthermore, the device leverages short-term memory principles to emulate learning behaviors observed in the brain by showcasing "forgetting" paradigms. Additionally, control of the input spikes yields different synaptic plasticity responses, thus emulating the key functions of our synapse. Computational simulations demonstrate the device's ability to perform both computing and sensing tasks effectively, thus enabling on-receptor computing with associative learning capabilities.
对节能数据处理的需求不断增加,引发了人们对旨在模拟大脑功能的神经形态计算的兴趣日益浓厚。这种方法提供了经济高效且快速的并行数据处理,超越了传统冯·诺依曼架构的局限性。这种模拟的关键在于开发模仿生物突触的忆阻器。最近,研究工作集中在将能够检测外部刺激的伤害感受器(感觉神经元)纳入忆阻器,以用于机器人技术和人工智能应用。这种集成使忆阻器能够适应各种情况,同时保持成本效益。利用一种非丝状渐变电阻开关忆阻器来实现人工伤害感受器和突触行为。所制造的铂/铟镓锌氧化物(IGZO)/二氧化锡/氮化钛器件展现出生物伤害感受器的基本特性,包括阈值响应、无适应性、弛豫、敏化和恢复。此外,该器件利用短期记忆原理,通过展示“遗忘”范式来模拟在大脑中观察到的学习行为。此外,对输入尖峰的控制会产生不同的突触可塑性反应,从而模拟我们突触的关键功能。计算模拟证明了该器件有效执行计算和传感任务的能力,从而实现具有关联学习能力的感受器上计算。