Ben-Haim Yakov, Dacso Clifford C
Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
Baylor College of Medicine, Houston, Texas, USA.
Rambam Maimonides Med J. 2024 Jul 30;15(3):e0013. doi: 10.5041/RMMJ.10527.
Medical decision-making is often uncertain. The positive predictive value (PPV) and negative predictive value (NPV) are conditional probabilities characterizing diagnostic tests and assessing diagnostic interventions in clinical medicine and epidemiology. The PPV is the probability that a patient has a specified disease, given a positive test result for that disease. The NPV is the probability that a patient does not have the disease, given a negative test result for that disease. Both values depend on disease incidence or prevalence, which may be highly uncertain for unfamiliar diseases, epidemics, etc. Probability distributions for this uncertainty are usually unavailable. We develop a non-probabilistic method for interpreting PPV and NPV with uncertain prevalence.
Uncertainty in PPV and NPV is managed with the non-probabilistic concept of robustness in info-gap theory. Robustness of PPV or NPV estimates is the greatest uncertainty (in prevalence) at which the estimate's error is acceptable.
Four properties are demonstrated. Zeroing: best estimates of PPV or NPV have no robustness to uncertain prevalence; best estimates are unreliable for interpreting diagnostic tests. Trade-off: robustness increases as error increases; this trade-off identifies robustly reliable error in PPV or NPV. Preference reversal: sometimes sub-optimal PPV or NPV estimates are more robust to uncertain incidence or prevalence than optimal estimates, motivating reversal of preference from the putative optimum to the sub-optimal estimate. Trade-off between specificity and robustness to uncertainty: the robustness increases as test-specificity decreases. These four properties underlie the interpretation of PPV and NPV.
The PPV and NPV assess diagnostic tests, but are sensitive to lack of knowledge that generates non-probabilistic uncertain prevalence and must be supplemented with robustness analysis. When uncertainties abound, as with unfamiliar diseases, assessing robustness is critical to avoiding erroneous decisions.
医学决策往往具有不确定性。阳性预测值(PPV)和阴性预测值(NPV)是用于表征诊断测试以及评估临床医学和流行病学中诊断干预措施的条件概率。PPV是指在某种疾病检测结果呈阳性的情况下,患者患有该特定疾病的概率。NPV是指在某种疾病检测结果呈阴性的情况下,患者未患有该疾病的概率。这两个值均取决于疾病的发病率或患病率,而对于不常见疾病、流行病等而言,其发病率或患病率可能极不确定。通常无法获得针对这种不确定性的概率分布。我们开发了一种非概率方法,用于在患病率不确定的情况下解释PPV和NPV。
运用信息间隙理论中稳健性这一非概率概念来处理PPV和NPV的不确定性。PPV或NPV估计值的稳健性是指估计误差可接受时的最大不确定性(患病率方面)。
论证了四个特性。归零:PPV或NPV的最佳估计值对于不确定的患病率没有稳健性;最佳估计值对于解释诊断测试并不可靠。权衡:稳健性随误差增加而增加;这种权衡确定了PPV或NPV中稳健可靠的误差。偏好反转:有时次优的PPV或NPV估计值比最优估计值对不确定的发病率或患病率更具稳健性,从而促使偏好从假定的最优值转向次优估计值。特异性与不确定性稳健性之间的权衡:稳健性随测试特异性降低而增加。这四个特性构成了对PPV和NPV进行解释的基础。
PPV和NPV用于评估诊断测试,但对因缺乏知识而产生的非概率性不确定患病率很敏感,必须辅以稳健性分析。当存在诸多不确定性时,如面对不常见疾病,评估稳健性对于避免错误决策至关重要。