Suppr超能文献

复制叉倒转的机制和调控。

Mechanisms and regulation of replication fork reversal.

机构信息

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.

出版信息

DNA Repair (Amst). 2024 Sep;141:103731. doi: 10.1016/j.dnarep.2024.103731. Epub 2024 Jul 22.

Abstract

DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.

摘要

DNA 复制具有惊人的准确性,每个细胞分裂周期中人类基因组中只有少数几个突变。由 DNA 损伤、转录-复制冲突以及复制机制的其他障碍引起的复制压力必须以最小化错误和最大化 DNA 合成完成的方式有效地克服。复制叉反转是一种帮助细胞耐受复制压力的机制。该过程涉及亲本模板 DNA 链的重新退火和新生-新生 DNA 双链的产生。虽然叉反转通过促进 DNA 修复或模板转换可能是有益的,但它必须局限于适当的环境中以保持基因组稳定性。许多酶已被牵连在这个过程中,包括 ATP 依赖性 DNA 易位酶,如 SMARCAL1、ZRANB3、HLTF 和解旋酶 FBH1。此外,RAD51 重组酶也是必需的。许多其他因素和调节活动也起到了确保反转有益而不是产生不良后果的作用。最后,反转的叉也必须稳定下来,并且通常需要重新启动以完成 DNA 合成。叉反转的破坏或失调会导致多种人类疾病。在这篇综述中,我们将描述最新的反转模型和关键的调节机制。

相似文献

1
Mechanisms and regulation of replication fork reversal.
DNA Repair (Amst). 2024 Sep;141:103731. doi: 10.1016/j.dnarep.2024.103731. Epub 2024 Jul 22.
3
ATM priming and end resection-coupled phosphorylation of MRE11 is important for fork protection and replication restart.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2422720122. doi: 10.1073/pnas.2422720122. Epub 2025 Apr 18.
4
DNA replication initiation timing is important for maintaining genome integrity.
J Bacteriol. 2025 Jul 21:e0017525. doi: 10.1128/jb.00175-25.
5
The Ski2 helicase ASCC3 unwinds DNA upon fork stalling to control replication stress responses.
bioRxiv. 2025 Jul 26:2025.07.24.666583. doi: 10.1101/2025.07.24.666583.
6
The herpes simplex virus alkaline nuclease is required to maintain replication fork progression.
J Virol. 2024 Dec 17;98(12):e0183624. doi: 10.1128/jvi.01836-24. Epub 2024 Nov 7.
7
HPV16 recruitment of SMARCAL1 to viral and host replication forks is required for the viral life cycle.
bioRxiv. 2025 Jul 22:2025.07.22.666081. doi: 10.1101/2025.07.22.666081.
8
The levels of p53 govern the hierarchy of DNA damage tolerance pathway usage.
Nucleic Acids Res. 2024 Apr 24;52(7):3740-3760. doi: 10.1093/nar/gkae061.
9
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.

引用本文的文献

1
Distinct mechanisms underlying extrachromosomal telomere DNA generation in ALT cancers.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf771.
2
The Ski2 helicase ASCC3 unwinds DNA upon fork stalling to control replication stress responses.
bioRxiv. 2025 Jul 26:2025.07.24.666583. doi: 10.1101/2025.07.24.666583.
4
TRF1 relies on fork reversal to prevent fragility at human telomeres.
Nat Commun. 2025 Jul 11;16(1):6439. doi: 10.1038/s41467-025-61828-5.
5
ZC3H4 safeguards genome integrity by preventing transcription-replication conflicts at noncoding RNA loci.
Sci Adv. 2025 Jun 20;11(25):eadt8346. doi: 10.1126/sciadv.adt8346. Epub 2025 Jun 18.
6
An ATM-PPM1D Circuit Controls the Processing and Restart of DNA Replication Forks.
bioRxiv. 2025 May 15:2025.05.13.652823. doi: 10.1101/2025.05.13.652823.
7
The Slx4-Rad1-Rad10 nuclease differentially regulates deletions and duplications induced by a replication fork barrier.
PLoS Genet. 2025 May 30;21(5):e1011720. doi: 10.1371/journal.pgen.1011720. eCollection 2025 May.
8
Phospho-RPA2 predicts response to platinum and PARP inhibitors in homologous recombination-proficient ovarian cancer.
J Clin Invest. 2025 May 20;135(13). doi: 10.1172/JCI189511. eCollection 2025 Jul 1.
9
Real-time imaging of rotation during synthesis by the replisome.
bioRxiv. 2025 Apr 7:2025.04.01.646591. doi: 10.1101/2025.04.01.646591.
10
ATM priming and end resection-coupled phosphorylation of MRE11 is important for fork protection and replication restart.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2422720122. doi: 10.1073/pnas.2422720122. Epub 2025 Apr 18.

本文引用的文献

1
Disparate requirements for RAD54L in replication fork reversal.
Nucleic Acids Res. 2024 Nov 11;52(20):12390-12404. doi: 10.1093/nar/gkae828.
2
The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA.
Nat Commun. 2024 Aug 21;15(1):7197. doi: 10.1038/s41467-024-51595-0.
3
HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing.
Nat Commun. 2024 Jul 10;15(1):5789. doi: 10.1038/s41467-024-50080-y.
4
Structure and repair of replication-coupled DNA breaks.
Science. 2024 Aug 16;385(6710):eado3867. doi: 10.1126/science.ado3867.
5
SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability.
PLoS Biol. 2024 Mar 19;22(3):e3002552. doi: 10.1371/journal.pbio.3002552. eCollection 2024 Mar.
6
Structure of RADX and mechanism for regulation of RAD51 nucleofilaments.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2316491121. doi: 10.1073/pnas.2316491121. Epub 2024 Mar 11.
7
RAD51 restricts DNA over-replication from re-activated origins.
EMBO J. 2024 Mar;43(6):1043-1064. doi: 10.1038/s44318-024-00038-z. Epub 2024 Feb 15.
8
TFIP11 promotes replication fork reversal to preserve genome stability.
Nat Commun. 2024 Feb 10;15(1):1262. doi: 10.1038/s41467-024-45684-3.
9
SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion.
Cell. 2024 Feb 15;187(4):861-881.e32. doi: 10.1016/j.cell.2024.01.008. Epub 2024 Jan 31.
10
Human RAD52 stimulates the RAD51-mediated homology search.
Life Sci Alliance. 2023 Dec 11;7(3). doi: 10.26508/lsa.202201751. Print 2024 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验