College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China.
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; College of Chemical and Environmental Engineering, Anyang Key Laboratory of Antibacterial and Antiviral, Anyang Institute of Technology, Anyang, Henan 455000, PR China.
Int J Biol Macromol. 2024 Oct;277(Pt 2):134356. doi: 10.1016/j.ijbiomac.2024.134356. Epub 2024 Jul 30.
With the rapid advancement of flexible, portable devices, hydrogel electrolytes have gained considerable attention as potential replacements for conventional liquid electrolytes. A hydrogel electrolyte was synthesised by cross-linking acrylic acid (AA), acrylamide (AM), carboxymethyl cellulose (CMC), and zinc sulphate (ZnSO). The formation of hydrogen bonds and chelate interactions between the P(AA-co-AM) polymer, CMC, and ZnSO created a robust network, enhancing the mechanical properties of the hydrogel electrolytes. Notably, the hydrogel electrolyte containing 0.6 % CMC demonstrated superior mechanical strength (compression strength of 1.22 MPa, tensile stress of 230 kPa, tensile strain of 424 %, adhesion strength of 1.98 MPa on wood). Additionally, the CMC/P(AA-co-AM) hydrogels exhibited commendable electrical performance (38 mS/cm) and a high gauge factor (2.9), enabling the precise detection of physiological activity signals through resistance measurements. The unique network structure of the hydrogel electrolyte also ensured a stable bonding interface between the electrode and the electrolyte. After 2000 charge-discharge cycles, the supercapacitor maintained good capacitance characteristics, with a capacitance retention rate of 71.21 % and a stable Coulombic efficiency of 98.85 %, demonstrating excellent cyclic stability. This study introduces a novel methodology for fabricating multifunctional all-solid-state supercapacitors and suggests that the hydrogel can significantly advance the development of wearable energy storage devices.
随着灵活、便携设备的快速发展,水凝胶电解质作为传统液体电解质的潜在替代品受到了广泛关注。通过交联丙烯酸(AA)、丙烯酰胺(AM)、羧甲基纤维素(CMC)和硫酸锌(ZnSO)合成了水凝胶电解质。P(AA-co-AM)聚合物、CMC 和 ZnSO 之间形成氢键和螯合相互作用,形成了一个坚固的网络,提高了水凝胶电解质的机械性能。值得注意的是,含有 0.6%CMC 的水凝胶电解质具有优异的机械强度(压缩强度为 1.22MPa,拉伸应力为 230kPa,拉伸应变为 424%,在木材上的粘附强度为 1.98MPa)。此外,CMC/P(AA-co-AM)水凝胶具有出色的电性能(38mS/cm)和高应变系数(2.9),可通过电阻测量精确检测生理活动信号。水凝胶电解质的独特网络结构还确保了电极和电解质之间稳定的键合界面。在 2000 次充放电循环后,超级电容器保持了良好的电容特性,电容保持率为 71.21%,库仑效率稳定在 98.85%,表现出优异的循环稳定性。本研究介绍了一种制造多功能全固态超级电容器的新方法,并表明该水凝胶可以显著推动可穿戴储能设备的发展。