Zhong Yingxin, Chen Yuhua, Pan Mingsheng, Li Xiangnan, Hebelstrup Kim, Cai Jian, Zhou Qin, Dai Tingbo, Cao Weixing, Jiang Dong
National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China.
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
Commun Biol. 2024 Aug 2;7(1):928. doi: 10.1038/s42003-024-06625-4.
Wheat grain starch content displays large variations within different pearling fractions, which affecting the processing quality of corresponding flour, while the underlying mechanism on starch gradient formation is unclear. Here, we show that wheat caryopses acquire sugar through the transfer of cells (TCs), inner endosperm (IE), outer endosperm (OE), and finally aleurone (AL) via micro positron emission tomography-computed tomography (PET-CT). To obtain integrated information on spatial transcript distributions, developing caryopses are laser microdissected into AL, OE, IE, and TC. Most genes encoding carbohydrate transporters are upregulated or specifically expressed, and sugar metabolites are more highly enriched in the TC group than in the AL group, in line with the PET-CT results. Genes encoding enzymes in sucrose metabolism, such as sucrose synthase, beta-fructofuranosidase, glucose-1-phosphate adenylyltransferase show significantly lower expression in AL than in OE and IE, indicating that substrate supply is crucial for the formation of starch gradients. Furthermore, the low expressions of gene encoding starch synthase contribute to low starch content in AL. Our results imply that transcriptional regulation represents an important means of impacting starch distribution in wheat grains and suggests breeding targets for enhancing specially pearled wheat with higher quality.
小麦籽粒淀粉含量在不同的碾磨组分中存在很大差异,这影响了相应面粉的加工品质,而淀粉梯度形成的潜在机制尚不清楚。在这里,我们通过微正电子发射断层扫描-计算机断层扫描(PET-CT)显示,小麦颖果通过细胞转移(TCs)、内胚乳(IE)、外胚乳(OE),最终通过糊粉层(AL)获取糖分。为了获得空间转录本分布的综合信息,将发育中的颖果激光显微切割成糊粉层、外胚乳、内胚乳和细胞转移层。大多数编码碳水化合物转运蛋白的基因上调或特异性表达,糖代谢产物在细胞转移层组中比在糊粉层组中富集程度更高,这与PET-CT结果一致。编码蔗糖代谢中酶的基因,如蔗糖合酶、β-呋喃果糖苷酶、葡萄糖-1-磷酸腺苷转移酶,在糊粉层中的表达明显低于在外胚乳和内胚乳中的表达,表明底物供应对淀粉梯度的形成至关重要。此外,编码淀粉合酶的基因的低表达导致糊粉层中淀粉含量较低。我们的结果表明,转录调控是影响小麦籽粒淀粉分布的重要手段,并为培育具有更高品质的特种碾磨小麦提供了育种目标。