Panera:一种使用泛属代谢模型克服微生物群落建模不确定性的创新框架。
Panera: An innovative framework for surmounting uncertainty in microbial community modeling using pan-genera metabolic models.
作者信息
Palanikumar Indumathi, Sinha Himanshu, Raman Karthik
机构信息
Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India.
Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai 600 036, India.
出版信息
iScience. 2024 Jun 22;27(7):110358. doi: 10.1016/j.isci.2024.110358. eCollection 2024 Jul 19.
Utilization of 16S rRNA data in constraint-based modeling to characterize microbial communities confronts a major hurdle of lack of species-level resolution, impeding the construction of community models. We introduce "," an innovative framework designed to model communities under this uncertainty and yet perform metabolic inferences using pan-genus metabolic models (PGMMs). We demonstrated PGMMs' utility for comprehending the metabolic capabilities of a genus and in characterizing community models using amplicon data. The unique, adaptable nature of PGMMs unlocks their potential in building hybrid communities, combining genome-scale metabolic models (GSMMs) and PGMMs. Notably, these models provide predictions comparable to the standard GSMM-based community models, while achieving a nearly 46% reduction in error compared to the genus model-based communities. In essence, "" presents a potent and effective approach to aid in metabolic modeling by enabling robust predictions of community metabolic potential when dealing with amplicon data, and offers insights into genus-level metabolic landscapes.
在基于约束的建模中利用16S rRNA数据来表征微生物群落面临着缺乏物种水平分辨率的重大障碍,这阻碍了群落模型的构建。我们引入了一个创新框架,旨在在这种不确定性下对群落进行建模,并使用泛属代谢模型(PGMMs)进行代谢推断。我们展示了PGMMs在理解属的代谢能力以及使用扩增子数据表征群落模型方面的效用。PGMMs独特的、可适应的性质释放了它们在构建混合群落方面的潜力,即将基因组规模代谢模型(GSMMs)和PGMMs相结合。值得注意的是,这些模型提供的预测与基于标准GSMM的群落模型相当,同时与基于属模型的群落相比,误差降低了近46%。本质上,本文提出了一种强大而有效的方法,通过在处理扩增子数据时对群落代谢潜力进行稳健预测来辅助代谢建模,并提供了对属水平代谢景观的见解。
相似文献
Microbiome. 2018-9-5
Methods Mol Biol. 2022
Comput Struct Biotechnol J. 2012-11-12
Wiley Interdiscip Rev Syst Biol Med. 2015
本文引用的文献
Microb Biotechnol. 2024-1
Cancer Epidemiol Biomarkers Prev. 2024-3-1
Environ Microbiome. 2023-11-16
Nat Commun. 2023-3-27
Cell Rep Methods. 2023-1-23
Biomolecules. 2022-11-3