Abdelkrim Yasmine, Wu Jing, Jiao Fan-Zhen, Wang Zhi-Hao, Hou Sheng-Xing, Zhang Ting-Ting, Yu Zhong-Zhen, Qu Jin
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
J Colloid Interface Sci. 2025 Jan;677(Pt A):282-293. doi: 10.1016/j.jcis.2024.07.197. Epub 2024 Jul 25.
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are attractive approaches for solving the global problem of water pollution, due to the generation of highly-active reactive oxygen species (ROS). Therefore, highly-efficient PMS activation is crucial for promoting the catalytic degradation of environmental pollutants. Here, bimetallic CoGeO(OH) nanosheets with abundant surface hydroxyl groups (CGH) were synthesized via a simple hydrothermal route for PMS activation and degradation of various organic contaminants for the first time. The abundant surface hydroxyl groups (≡Co-OH/≡Ge-OH) could promptly initiate PMS to generate highly-active species: singlet oxygen (O), sulfate radicals (SO·) and hydroxyl radicals (HO), while the asymmetric electron distribution among Co-O-Ge bonds derived from the higher electronegativity of Ge than Co further enhances the quick electron transfer to promote the redox cycle of Co/Co and Ge/Ge, thereby achieving an outstanding catalytic capability. The optimal catalyst exhibits nearly 100 % catalytic degradation performance of dyes (Methylene blue, Rhodamine B, Methyl orange, Orange II, Methyl green) and antibiotics (Norfloxacin, Bisphenol A, Tetracycline) over a wide pH range of 3-11 and under different coexisting anion conditions (Cl, HCO, NO, HA), suggesting the excellent adaptability for practical usage. This study could potentially lead to novel perspectives on the remediation of water areas such as groundwater and deep-water areas.
基于过一硫酸盐(PMS)的高级氧化工艺(AOPs)是解决全球水污染问题的有吸引力的方法,因为会产生高活性的活性氧物种(ROS)。因此,高效的PMS活化对于促进环境污染物的催化降解至关重要。在此,首次通过简单的水热路线合成了具有丰富表面羟基的双金属CoGeO(OH)纳米片(CGH),用于PMS活化和降解各种有机污染物。丰富的表面羟基(≡Co-OH/≡Ge-OH)可迅速引发PMS生成高活性物种:单线态氧(O)、硫酸根自由基(SO·)和羟基自由基(HO),而Ge的电负性高于Co导致Co-O-Ge键之间的不对称电子分布进一步增强了快速电子转移,促进了Co/Co和Ge/Ge的氧化还原循环,从而实现了出色的催化能力。最佳催化剂在3-11的宽pH范围内以及不同共存阴离子条件(Cl、HCO、NO、HA)下对染料(亚甲基蓝、罗丹明B、甲基橙、橙黄II、甲基绿)和抗生素(诺氟沙星、双酚A、四环素)表现出近100%的催化降解性能,表明其在实际应用中具有出色的适应性。这项研究可能会为地下水和深水区域等水域的修复带来新的视角。