Suppr超能文献

SARC-UNet:一种基于空间注意力和残差卷积的冠状动脉分割方法。

SARC-UNet: A coronary artery segmentation method based on spatial attention and residual convolution.

机构信息

School of Mathematics, Shandong University, Jinan, Shandong, 250100, China.

School of Mathematics, Shandong University, Jinan, Shandong, 250100, China.

出版信息

Comput Methods Programs Biomed. 2024 Oct;255:108353. doi: 10.1016/j.cmpb.2024.108353. Epub 2024 Jul 27.

Abstract

BACKGROUND AND OBJECTIVE

Coronary artery segmentation is a pivotal field that has received increasing attention in recent years. However, this task remains challenging because of the inhomogeneous distributions of the contrast agent and dim light, resulting in noise, vascular breakages and small vessel losses in the obtained segmentation results.

METHODS

To acquire better automatic blood vessel segmentation results for coronary angiography images, a UNet-based segmentation network (SARC-UNet) is constructed for coronary artery segmentation; this approach is based on residual convolution and spatial attention. First, we use the low-light image enhancement (LIME) approach to increase the contrast and clarity levels of coronary angiography images. Then, we design two residual convolution fusion modules (RCFM1 and RCFM2) that can successfully fuse the local and global information of coronary images while also capturing the characteristics of finer-grained blood vessels, hence preventing the loss of tiny blood vessels in the segmentation findings. Finally, using a cascaded waterfall structure, we create a new location-enhanced spatial attention (LESA) mechanism that can efficiently improve the long-distance dependencies between coronary vascular pixel features, eradicating vascular ruptures and noise in the segmentation results.

RESULTS

This article subjectively and objectively evaluates the experimental results. This method has performed well on five general indicators. Furthermore, it outperforms the connectivity indicators proposed in this article. This method can effectively segment blood vessels and obtain higher accuracy results.

CONCLUSIONS

Numerous experiments have shown that the suggested method outperforms the state-of-the-art approaches, particularly in terms of vessel connectivity and small blood vessel segmentation.

摘要

背景与目的

冠状动脉分割是近年来受到越来越多关注的关键领域。然而,由于造影剂和弱光的不均匀分布,导致分割结果中存在噪声、血管断裂和小血管丢失,因此这项任务仍然具有挑战性。

方法

为了获得更好的冠状动脉造影图像自动血管分割结果,构建了一种基于 U 型网络(SARC-UNet)的分割网络用于冠状动脉分割;该方法基于残差卷积和空间注意力。首先,我们使用低光图像增强(LIME)方法来提高冠状动脉造影图像的对比度和清晰度。然后,我们设计了两个残差卷积融合模块(RCFM1 和 RCFM2),可以成功融合冠状动脉图像的局部和全局信息,同时捕捉更细粒度血管的特征,从而防止分割结果中小血管的丢失。最后,使用级联瀑布结构,创建新的位置增强空间注意力(LESA)机制,可以有效地提高冠状动脉血管像素特征之间的远距离依赖关系,消除分割结果中的血管断裂和噪声。

结果

本文从主观和客观两个方面对实验结果进行了评估。该方法在五个一般指标上表现良好。此外,它在本文提出的连通性指标上表现更好。该方法可以有效地分割血管并获得更高的准确性结果。

结论

大量实验表明,该方法优于现有方法,特别是在血管连通性和小血管分割方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验