Gan Zhanhui, Xu Zhuoqi, Tian Kun, Zhou Dongdong, Li Luyang, Ma Zhuang, Tan Rui, Li Weihua, Dong Xue-Hui
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China.
Nat Commun. 2024 Aug 3;15(1):6581. doi: 10.1038/s41467-024-50906-9.
Despite being predicted to be a thermodynamically equilibrium structure, the absence of direct experimental evidence of hexagonally close-packed spherical phase in single-component block copolymers raises uncomfortable concerns regarding the existing fundamental phase principles. This work presents a robust approach to regulate the phase behavior of linear block copolymers by deliberately breaking molecular symmetry, and the hexagonally close-packed lattice is captured in a rigorous single-component system. A collection of discrete ABA triblock copolymers is designed and prepared through an iterative growth method. The precise chemical composition and uniform chain length eliminates inherent size distribution and other molecular defects. Simply by tuning the relative chain length of two end A blocks, a rich array of ordered nanostructures, including Frank-Kasper A15 and σ phases, are fabricated without changing the overall chemistry or composition. More interestingly, hexagonally close-packed spherical phase becomes thermodynamically stable and experimentally accessible attributed to the synergistic contribution of the two end blocks. The shorter A blocks are pulled out from the core domain into the matrix to release packing frustration, while the longer ones stabilize the ordered spherical phase against composition fluctuation that tends to disrupt the lattice. This study adds a missing puzzle piece to the block copolymer phase diagram and provides a robust approach for rational structural engineering.
尽管被预测为热力学平衡结构,但在单组分嵌段共聚物中缺乏六方密堆积球形相的直接实验证据,这引发了人们对现有基本相原理的不安担忧。这项工作提出了一种通过故意打破分子对称性来调节线性嵌段共聚物相行为的稳健方法,并且在一个严格的单组分体系中捕获了六方密堆积晶格。通过迭代生长法设计并制备了一系列离散的ABA三嵌段共聚物。精确的化学组成和均匀的链长消除了固有的尺寸分布和其他分子缺陷。只需调整两个末端A嵌段的相对链长,就能在不改变整体化学性质或组成的情况下制备出一系列丰富的有序纳米结构,包括Frank-Kasper A15相和σ相。更有趣的是,由于两个末端嵌段的协同作用,六方密堆积球形相变得热力学稳定且可通过实验获得。较短的A嵌段从核心区域被拉到基体中以释放堆积挫折,而较长的A嵌段则稳定有序球形相以抵抗倾向于破坏晶格的组成波动。这项研究为嵌段共聚物相图增添了缺失的拼图,并为合理的结构工程提供了一种稳健方法。