Suppr超能文献

关于具有非单调流变学的压力驱动泊肃叶流动

On pressure-driven Poiseuille flow with non-monotonic rheology.

作者信息

Talon L, Salin D

机构信息

CNRS, FAST, Université Paris-Saclay, 91405, Orsay, France.

出版信息

Eur Phys J E Soft Matter. 2024 Aug 4;47(8):52. doi: 10.1140/epje/s10189-024-00444-5.

Abstract

Shear thickening fluids are liquids that stiffen as the applied stress increases. If many of these types of fluids follow a monotonic rheological curve, some experimental and numerical studies suggest that certain fluids, like cornstarch, may exhibit a non-monotonic, S-shaped rheology. Such non-monotonic behavior has however proved very difficult to observe experimentally in classical rheometer. To explain such difficulties, the possible presence of vorticity banding in the rheometer has been considered. To prevent such instabilities, we use a capillary rheometer, which is a cylindrical tube, measuring the flow rate versus the applied pressure drop. With this setup, we indeed observe a non-monotonic behavior: the flow rate increases monotonically at low pressure drops up to a maximum, after which it abruptly decreases to an almost constant flow rate regardless of further increases in pressure drop. This maximum-jump-plateau behavior occurs over a wide range of concentrations and is reproducible without hysteresis, which is in agreement with an S-shaped rheology. However, the obtained flow versus pressure difference function does not agree with the classical Wyart-Cates rheological model, which predicts an S-shaped non-monotonic function, but with neither a jump nor a plateau. To understand this jump-plateau behavior, we remark that any rheological model would establish a relationship between the flow rate and the local pressure gradient, but not the total pressure drop. We thus discuss and analyze the implications of having an S-shaped non-monotonic flow rate-pressure gradient in Poiseuille flow. In particular, we discuss the possibility of a non-uniform pressure gradient in the direction of the flow, i.e., a kind of streamwise banding. The key issue is then the selection of the gradient pressure distribution along the tube. One solution could arise from an analogy of this problem with the spinodal decomposition. It, however, leads to an increase in flow rate with up to a plateau between two values of as determined by the Maxwell construction. To account for the bump-jump behavior, we have implemented a simple dynamical stochastic version of the Wyart-Cates model, where the thickening occurs with a characteristic time. As a result, with increasing the total pressure drop, the flow rate increases monotonically up to a maximum value. Beyond this point, the flow rate drops abruptly to a lower value, forming a slowly decreasing plateau. This behavior is likely to account for the maximum-jump-plateau observed in the experiments. We also show that in such a system, the final state is quite sensitive to the initial state of the fluid, especially its homogeneity. Our results then demonstrate that the mere presence of a non-monotonic rheological curve is sufficient to predict the occurrence of stress banding in the streamwise direction and a plateau flow rate, even if the suspension remains homogeneous.

摘要

剪切增稠流体是一种随着施加应力增加而变硬的液体。如果许多这类流体遵循单调流变曲线,一些实验和数值研究表明,某些流体,如玉米淀粉,可能呈现非单调的S形流变特性。然而,这种非单调行为在经典流变仪中通过实验很难观察到。为了解释这种困难,人们考虑了流变仪中可能存在的涡带现象。为了防止这种不稳定性,我们使用毛细管流变仪,它是一个圆柱形管,测量流速与施加的压力降之间的关系。通过这种设置,我们确实观察到了非单调行为:在低压降下,流速单调增加直至达到最大值,之后无论压力降如何进一步增加,流速都会突然降至几乎恒定的值。这种最大值 - 跳跃 - 平稳行为在很宽的浓度范围内都会出现,并且可重复且无滞后现象,这与S形流变特性一致。然而,所得到的流速与压力差函数与经典的怀亚特 - 凯茨流变模型不一致,该模型预测的是一个S形非单调函数,但既没有跳跃也没有平稳段。为了理解这种跳跃 - 平稳行为,我们注意到任何流变模型都会建立流速与局部压力梯度之间的关系,而不是与总压力降之间的关系。因此,我们讨论并分析了在泊肃叶流中具有S形非单调流速 - 压力梯度的影响。特别是,我们讨论了在流动方向上存在非均匀压力梯度的可能性,即一种流向带状现象。关键问题在于沿管的梯度压力分布的选择。一种解决方案可能源于将此问题与旋节线分解进行类比。然而,这会导致流速随着[具体变量]增加直至在由麦克斯韦构造确定的两个[具体变量]值之间达到平稳段。为了解释这种凸起 - 跳跃行为,我们实现了怀亚特 - 凯茨模型的一个简单动态随机版本,其中增稠以一个特征时间发生。结果,随着总压力降增加,流速单调增加直至达到最大值。超过这一点后,流速突然降至较低值,形成一个缓慢下降的平稳段。这种行为可能解释了实验中观察到的最大值 - 跳跃 - 平稳现象。我们还表明,在这样的系统中,最终状态对流体的初始状态非常敏感,尤其是其均匀性。我们的结果表明,仅仅存在非单调流变曲线就足以预测在流向方向上应力带状现象的出现和平稳流速的发生,即使悬浮液保持均匀。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验