Suppr超能文献

通过球磨中的结构重排制备具有球形包络结构的纤维素二元涂层,用于集成辐射冷却-发电。

Cellulose binary coatings with spherical envelope structure via structure rearrangement in ball milling for integrated radiative cooling-electricity generation.

机构信息

Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.

Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.

出版信息

Int J Biol Macromol. 2024 Oct;277(Pt 3):134248. doi: 10.1016/j.ijbiomac.2024.134248. Epub 2024 Aug 4.

Abstract

Passive daytime radiative cooling is a zero-energy consumption cooling technology, which can dissipate heat to outer space via infrared radiation. Recently, coupling radiative cooling technology and thermoelectric devices to generate electricity has attracted much attention. However, existing radiative cooling integrated thermoelectric devices still suffer from low-temperature gradient and output voltage. Here, based on the Mie scattering and internal reflection enhancing principle, an impact-inducing geometry reconstruction approach was proposed to fabricate hierarchical nanostructured cellulosic coatings with good daytime cooling performance to achieve stable electricity generation function, which can be realized by using a scalable and facile wet ball milling technology. Guided by the theoretical simulations of the finite difference time domain method (FDTD), the cellulose and TiO nanoparticles can assemble into spherical envelope structured coatings drying by the shear, impact, and friction interaction in the ball milling process, dramatically enhancing the Mie scattering and internal reflection of coatings. The cellulosic coatings exhibit sunlight reflectivity of 0.962 and infrared emissivity of 0.94, resulting in a daytime radiative cooling efficiency of 5.9 °C under direct sunlight. Energy Plus stimulation demonstrated 35 % cooling energy and 468.9 kWh of cooling energy can be saved annually in China. Meanwhile, this cellulosic coating-based thermoelectric device can deliver a high voltage output of 150 mV under 1 Sun due to the strong bonding and high-temperature gradient formation (30 °C), which is higher than previous reports. This study will facilitate the development of sustainable power generation device for the goal of green future.

摘要

被动式日间辐射冷却技术是一种零能耗的冷却技术,它可以通过红外辐射将热量散发到太空中。最近,将辐射冷却技术与热电设备相结合以发电引起了广泛关注。然而,现有的辐射冷却集成热电设备仍然存在低温梯度和输出电压低的问题。在这里,基于米氏散射和内部反射增强原理,提出了一种基于冲击诱导几何重构的方法,用于制造具有良好日间冷却性能的分层纳米结构纤维素涂层,以实现稳定的发电功能,这可以通过可扩展且简单的湿球磨工艺来实现。在有限差分时域法(FDTD)的理论模拟指导下,纤维素和 TiO2 纳米颗粒可以在球磨过程中通过剪切、冲击和摩擦相互作用组装成具有球形包络结构的涂层,从而显著增强涂层的米氏散射和内部反射。纤维素涂层在太阳光下的反射率为 0.962,红外发射率为 0.94,因此在直射阳光下的日间辐射冷却效率为 5.9°C。Energy Plus 模拟表明,在中国,每年可节省 35%的冷却能源和 468.9 kWh 的冷却能源。同时,由于强键合和高温梯度形成(30°C),基于这种纤维素涂层的热电装置在 1 个太阳光照下可产生 150 mV 的高电压输出,高于之前的报道。本研究将有助于为绿色未来的可持续发电装置的发展提供帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验