Suppr超能文献

基于局部Voronoi拓扑感知的集体行为的出现。

Emergence of collective behaviours from local Voronoi topological perception.

作者信息

Gonzalez Ivan, Tisdell Jack, Choksi Rustum, Nave Jean-Christophe

机构信息

Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada.

出版信息

R Soc Open Sci. 2024 Jun 5;11(6):231537. doi: 10.1098/rsos.231537. eCollection 2024 Jun.

Abstract

This article addresses how diverse collective behaviours arise from simple and realistic decisions made entirely at the level of each agent's personal space in the sense of the Voronoi diagram. We present a discrete-time model in two dimensions in which individual agents are aware of their local Voronoi environment and may seek static target locations. In particular, agents only communicate directly with their Voronoi neighbours and make decisions based on the geometry of their own Voronoi cells. With two effective control parameters, it is shown numerically to capture a wide range of collective behaviours in different scenarios. Further, we show that the Voronoi topology facilitates the computation of several novel observables for quantifying discrete collective behaviours. These observables are applicable to all agent-based models and to empirical data.

摘要

本文探讨了在沃罗诺伊图意义上,完全基于每个智能体个人空间层面做出的简单且现实的决策如何产生多样的集体行为。我们提出了一个二维离散时间模型,其中个体智能体了解其局部沃罗诺伊环境,并可能寻找静态目标位置。特别地,智能体仅与其沃罗诺伊邻居直接通信,并基于自身沃罗诺伊单元的几何形状做出决策。通过两个有效的控制参数,数值结果表明该模型能够捕捉不同场景下的广泛集体行为。此外,我们表明沃罗诺伊拓扑有助于计算几个用于量化离散集体行为的新型可观测量。这些可观测量适用于所有基于智能体的模型以及实证数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a71b/11295940/8a0f2dd033b4/rsos.231537.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验