Suppr超能文献

一种基于核注意力机制的变压器模型用于心脏病患者生存预测

A Kernel Attention-based Transformer Model for Survival Prediction of Heart Disease Patients.

作者信息

Kaushal Palak, Singh Shailendra, Vijayvergiya Rajesh

机构信息

Department of Computer Science and Engineering, Punjab Engineering College (Deemed to be University), Sector-12, Chandigarh, 160012, Chandigarh, India.

Advanced Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, Chandigarh, India.

出版信息

J Cardiovasc Transl Res. 2024 Dec;17(6):1295-1306. doi: 10.1007/s12265-024-10537-3. Epub 2024 Aug 5.

Abstract

Survival analysis is employed to scrutinize time-to-event data, with emphasis on comprehending the duration until the occurrence of a specific event. In this article, we introduce two novel survival prediction models: CosAttnSurv and CosAttnSurv DyACT. CosAttnSurv model leverages transformer-based architecture and a softmax-free kernel attention mechanism for survival prediction. Our second model, CosAttnSurv DyACT, enhances CosAttnSurv with Dynamic Adaptive Computation Time (DyACT) control, optimizing computation efficiency. The proposed models are validated using two public clinical datasets related to heart disease patients. When compared to other state-of-the-art models, our models demonstrated an enhanced discriminative and calibration performance. Furthermore, in comparison to other transformer architecture-based models, our proposed models demonstrate comparable performance while exhibiting significant reduction in both time and memory requirements. Overall, our models offer significant advancements in the field of survival analysis and emphasize the importance of computationally effective time-based predictions, with promising implications for medical decision-making and patient care.

摘要

生存分析用于审查事件发生时间数据,重点是理解特定事件发生前的持续时间。在本文中,我们介绍了两种新颖的生存预测模型:CosAttnSurv和CosAttnSurv DyACT。CosAttnSurv模型利用基于Transformer的架构和无softmax核注意力机制进行生存预测。我们的第二个模型CosAttnSurv DyACT通过动态自适应计算时间(DyACT)控制增强了CosAttnSurv,优化了计算效率。所提出的模型使用两个与心脏病患者相关的公共临床数据集进行了验证。与其他现有最先进模型相比,我们的模型表现出更强的判别和校准性能。此外,与其他基于Transformer架构的模型相比,我们提出的模型在性能相当的同时,时间和内存需求显著降低。总体而言,我们的模型在生存分析领域取得了重大进展,并强调了基于时间的计算有效预测的重要性,对医疗决策和患者护理具有潜在影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验