Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China.
CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China.
Environ Sci Technol. 2024 Aug 20;58(33):14906-14917. doi: 10.1021/acs.est.4c04157. Epub 2024 Aug 5.
Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D CoO and its growth on Fe foam for the first time to yield a unique monolithic catalyst named CoO/Fe-S. Compared to the CoO nanocube-loaded Fe foam, CoO/Fe-S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that CoO/Fe-S possesses abundant 2D CoO/FeO composite interfaces, which promote the construction of active sites (oxygen vacancy and Co) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir-Hinshelwood (L-H) and Mars-van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D CoO/FeO composite interfaces are generated in situ in molten salt, inducing the growth of 2D CoO onto the surface lattice of 2D FeO. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.
开发具有高效氧气活化能力的稳健金属整体催化剂对于挥发性有机化合物(VOC)污染的热催化处理至关重要。二维(2D)金属氧化物是替代热催化剂,但它们在载体上的传统负载策略在实际应用中仍面临挑战。在此,我们提出了一种新颖的原位熔融盐负载策略,首次同步构建了 2D CoO 及其在 Fe 泡沫上的生长,从而得到了一种名为 CoO/Fe-S 的独特整体催化剂。与负载 CoO 纳米立方体的 Fe 泡沫相比,CoO/Fe-S 表现出显著提高的催化性能,在 90%甲苯转化率下,温度降低了 44°C。相衬校正扫描透射电子显微镜和理论计算表明,CoO/Fe-S 具有丰富的 2D CoO/FeO 复合界面,促进了活性位点(氧空位和 Co)的构建,从而增强氧气活化和甲苯的化学吸附,从而通过 Langmuir-Hinshelwood(L-H)和 Mars-van Krevelen(MvK)机制加速反应中间体的转化。此外,生长机制表明 2D CoO/FeO 复合界面是在熔融盐中原位生成的,诱导 2D CoO 在 2D FeO 的表面晶格上生长。这项研究为增强氧气活化提供了新的见解,并为制备高效 VOC 氧化整体催化剂开辟了前所未有的途径。