Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany.
Clin Cancer Res. 2024 Oct 1;30(19):4424-4433. doi: 10.1158/1078-0432.CCR-24-1215.
In radiotherapy (RT) for brain tumors, patient heterogeneity masks treatment effects, complicating the prediction and mitigation of radiation-induced brain necrosis. Therefore, understanding this heterogeneity is essential for improving outcome assessments and reducing toxicity.
We developed a clinically practical pipeline to clarify the relationship between dosimetric features and outcomes by identifying key variables. We processed data from a cohort of 130 patients treated with proton therapy for brain and head and neck tumors, utilizing an expert-augmented Bayesian network to understand variable interdependencies and assess structural dependencies. Critical evaluation involved a three-level grading system for each network connection and a Markov blanket analysis to identify variables directly impacting necrosis risk. Statistical assessments included log-likelihood ratio, integrated discrimination index, net reclassification index, and receiver operating characteristic (ROC).
The analysis highlighted tumor location and proximity to critical structures such as white matter and ventricles as major determinants of necrosis risk. The majority of network connections were clinically supported, with quantitative measures confirming the significance of these variables in patient stratification (log-likelihood ratio = 12.17; P = 0.016; integrated discrimination index = 0.15; net reclassification index = 0.74). The ROC curve area was 0.66, emphasizing the discriminative value of nondosimetric variables.
Key patient variables critical to understanding brain necrosis post-RT were identified, aiding the study of dosimetric impacts and providing treatment confounders and moderators. This pipeline aims to enhance outcome assessments by revealing at-risk patients, offering a versatile tool for broader applications in RT to improve treatment personalization in different disease sites.
在脑肿瘤的放射治疗(RT)中,患者的异质性掩盖了治疗效果,使得预测和减轻放射性脑坏死变得更加复杂。因此,了解这种异质性对于改善预后评估和降低毒性至关重要。
我们开发了一种临床实用的流程,通过识别关键变量来阐明剂量学特征与结果之间的关系。我们处理了 130 名接受质子治疗脑和头颈部肿瘤患者的数据,利用专家增强贝叶斯网络来理解变量的相互依赖性,并评估结构依赖性。关键评估涉及每个网络连接的三级分级系统和马尔可夫毯分析,以识别直接影响坏死风险的变量。统计评估包括对数似然比、综合鉴别指数、净重新分类指数和接收器操作特征(ROC)。
分析强调了肿瘤位置和与白质和脑室等关键结构的接近程度是坏死风险的主要决定因素。大多数网络连接都得到了临床支持,定量测量结果证实了这些变量在患者分层中的重要性(对数似然比=12.17;P=0.016;综合鉴别指数=0.15;净重新分类指数=0.74)。ROC 曲线下面积为 0.66,强调了非剂量学变量的区分价值。
确定了对理解 RT 后脑坏死至关重要的关键患者变量,有助于研究剂量学影响,并提供治疗混杂因素和调节剂。该流程旨在通过揭示高危患者来增强预后评估,为不同疾病部位的 RT 提供更广泛的应用提供多功能工具,以改善治疗个体化。