Suppr超能文献

解码影响放射性脑坏死的患者异质性。

Decoding Patient Heterogeneity Influencing Radiation-Induced Brain Necrosis.

机构信息

Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany.

出版信息

Clin Cancer Res. 2024 Oct 1;30(19):4424-4433. doi: 10.1158/1078-0432.CCR-24-1215.

Abstract

PURPOSE

In radiotherapy (RT) for brain tumors, patient heterogeneity masks treatment effects, complicating the prediction and mitigation of radiation-induced brain necrosis. Therefore, understanding this heterogeneity is essential for improving outcome assessments and reducing toxicity.

EXPERIMENTAL DESIGN

We developed a clinically practical pipeline to clarify the relationship between dosimetric features and outcomes by identifying key variables. We processed data from a cohort of 130 patients treated with proton therapy for brain and head and neck tumors, utilizing an expert-augmented Bayesian network to understand variable interdependencies and assess structural dependencies. Critical evaluation involved a three-level grading system for each network connection and a Markov blanket analysis to identify variables directly impacting necrosis risk. Statistical assessments included log-likelihood ratio, integrated discrimination index, net reclassification index, and receiver operating characteristic (ROC).

RESULTS

The analysis highlighted tumor location and proximity to critical structures such as white matter and ventricles as major determinants of necrosis risk. The majority of network connections were clinically supported, with quantitative measures confirming the significance of these variables in patient stratification (log-likelihood ratio = 12.17; P = 0.016; integrated discrimination index = 0.15; net reclassification index = 0.74). The ROC curve area was 0.66, emphasizing the discriminative value of nondosimetric variables.

CONCLUSIONS

Key patient variables critical to understanding brain necrosis post-RT were identified, aiding the study of dosimetric impacts and providing treatment confounders and moderators. This pipeline aims to enhance outcome assessments by revealing at-risk patients, offering a versatile tool for broader applications in RT to improve treatment personalization in different disease sites.

摘要

目的

在脑肿瘤的放射治疗(RT)中,患者的异质性掩盖了治疗效果,使得预测和减轻放射性脑坏死变得更加复杂。因此,了解这种异质性对于改善预后评估和降低毒性至关重要。

实验设计

我们开发了一种临床实用的流程,通过识别关键变量来阐明剂量学特征与结果之间的关系。我们处理了 130 名接受质子治疗脑和头颈部肿瘤患者的数据,利用专家增强贝叶斯网络来理解变量的相互依赖性,并评估结构依赖性。关键评估涉及每个网络连接的三级分级系统和马尔可夫毯分析,以识别直接影响坏死风险的变量。统计评估包括对数似然比、综合鉴别指数、净重新分类指数和接收器操作特征(ROC)。

结果

分析强调了肿瘤位置和与白质和脑室等关键结构的接近程度是坏死风险的主要决定因素。大多数网络连接都得到了临床支持,定量测量结果证实了这些变量在患者分层中的重要性(对数似然比=12.17;P=0.016;综合鉴别指数=0.15;净重新分类指数=0.74)。ROC 曲线下面积为 0.66,强调了非剂量学变量的区分价值。

结论

确定了对理解 RT 后脑坏死至关重要的关键患者变量,有助于研究剂量学影响,并提供治疗混杂因素和调节剂。该流程旨在通过揭示高危患者来增强预后评估,为不同疾病部位的 RT 提供更广泛的应用提供多功能工具,以改善治疗个体化。

相似文献

1
Decoding Patient Heterogeneity Influencing Radiation-Induced Brain Necrosis.
Clin Cancer Res. 2024 Oct 1;30(19):4424-4433. doi: 10.1158/1078-0432.CCR-24-1215.
2
Volumetric and actuarial analysis of brain necrosis in proton therapy using a novel mixture cure model.
Radiother Oncol. 2020 Jan;142:154-161. doi: 10.1016/j.radonc.2019.09.008. Epub 2019 Sep 25.
3
Radiation Necrosis and White Matter Lesions in Pediatric Patients With Brain Tumors Treated With Pencil Beam Scanning Proton Therapy.
Int J Radiat Oncol Biol Phys. 2018 Mar 15;100(4):987-996. doi: 10.1016/j.ijrobp.2017.11.037. Epub 2017 Dec 1.
4
Association of 1p/19q Codeletion and Radiation Necrosis in Adult Cranial Gliomas After Proton or Photon Therapy.
Int J Radiat Oncol Biol Phys. 2018 Jun 1;101(2):334-343. doi: 10.1016/j.ijrobp.2018.01.099. Epub 2018 Feb 9.
7
Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors.
Radiographics. 2015 Sep-Oct;35(5):1502-27. doi: 10.1148/rg.2015140029. Epub 2015 Aug 7.
8
Improving the utility of H-MRS for the differentiation of glioma recurrence from radiation necrosis.
J Neurooncol. 2017 May;133(1):97-105. doi: 10.1007/s11060-017-2407-y. Epub 2017 May 29.
9
Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas.
Oncologist. 2024 Dec 6;29(12):e1748-e1761. doi: 10.1093/oncolo/oyae195.

引用本文的文献

1
Targeting Active Microglia Alleviates Distal Edge of Proton Radiation-induced Neural Damage.
Adv Radiat Oncol. 2025 Mar 18;10(5):101764. doi: 10.1016/j.adro.2025.101764. eCollection 2025 May.

本文引用的文献

1
Linear energy transfer-inclusive models of brainstem necrosis following proton therapy of paediatric ependymoma.
Phys Imaging Radiat Oncol. 2023 Jun 29;27:100466. doi: 10.1016/j.phro.2023.100466. eCollection 2023 Jul.
3
Deep learning-based precise prediction and early detection of radiation-induced temporal lobe injury for nasopharyngeal carcinoma.
EClinicalMedicine. 2023 Apr 4;58:101930. doi: 10.1016/j.eclinm.2023.101930. eCollection 2023 Apr.
4
Association of Early Adulthood Hypertension and Blood Pressure Change With Late-Life Neuroimaging Biomarkers.
JAMA Netw Open. 2023 Apr 3;6(4):e236431. doi: 10.1001/jamanetworkopen.2023.6431.
5
SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining.
Med Image Anal. 2023 May;86:102789. doi: 10.1016/j.media.2023.102789. Epub 2023 Feb 25.
7
Increased relative biological effectiveness and periventricular radiosensitivity in proton therapy of glioma patients.
Radiother Oncol. 2023 Jan;178:109422. doi: 10.1016/j.radonc.2022.11.011. Epub 2022 Nov 23.
9
Radiation-induced neuropathological changes in the oligodendrocyte lineage with relevant clinical manifestations and therapeutic strategies.
Int J Radiat Biol. 2022;98(10):1519-1531. doi: 10.1080/09553002.2022.2055804. Epub 2022 Apr 6.
10
Radiation induced contrast enhancement after proton beam therapy in patients with low grade glioma - How safe are protons?
Radiother Oncol. 2022 Feb;167:211-218. doi: 10.1016/j.radonc.2021.12.035. Epub 2021 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验