Suppr超能文献

调控Pt单原子- NiP的电子结构以增强析氢反应

Regulating the electronic structure of Pt SAs-NiP for enhanced hydrogen evolution reaction.

作者信息

Wang Yushun, Zhang Xinzheng, Yang Yuquan, Wang Huichao, Lau Woon-Ming, Wang Chenjing, Fu Zhongheng, Pang Dawei, Wang Qian, Zheng Jinlong

机构信息

Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China.

Institute for Advanced Materials and Technology, University of Science and Technology Beijing 100083, China.

出版信息

J Colloid Interface Sci. 2025 Jan;677(Pt A):491-501. doi: 10.1016/j.jcis.2024.07.243. Epub 2024 Jul 31.

Abstract

The single atom catalysts (SACs) show immense promise as catalytic materials. By doping the single atoms (SAs) of precious metals onto substrates, the atomic utilization of these metals can be maximized, thereby reducing catalyst costs. The electronic structure of precious metal SAs is significantly influenced by compositions of doped substrates. Therefore, optimizing the electronic structure through appropriate doping of substrates can further enhance catalytic activity. Here, Pt single atoms (Pt SAs) are doped onto transition metal sulfide substrate NiS (Pt SAs-NiS) and phosphide substrate NiP (Pt SAs-NiP) to design and prepare catalysts. Compared to the Pt SAs-NiS catalyst, the Pt SAs-NiP catalyst exhibits better hydrogen evolution catalytic performance and stability. Under 1 M KOH conditions, the hydrogen evolution mass activity current density of the Pt SAs-NiP catalyst reaches 0.225 A mg at 50 mV, which is 33 times higher than that of commercial Pt/C catalysts. It requires only 44.9 mV to achieve a current density of 10 mA cm. In contrast, for the Pt SAs-NiS catalyst, the hydrogen evolution mass activity current density is 0.178 A mg, requiring 77.8 mV to achieve a current density of 10 mA cm. Theoretical calculations indicate that in Pt SAs-NiP, the interaction between Pt SAs and the NiP substrate causes the Pt d-band center to shift downward, enhancing the HO desorption and providing optimal H binding sites. Additionally, the hollow octahedral morphology of NiP provides a larger surface area, exposing more reactive sites and improving reaction kinetics. This study presents an effective pathway for preparing high-performance hydrogen evolution electrocatalysts by selecting appropriate doped substrates to control the electronic structure of Pt SAs.

摘要

单原子催化剂(SACs)作为催化材料展现出巨大的潜力。通过将贵金属单原子(SAs)掺杂到基底上,可以使这些金属的原子利用率最大化,从而降低催化剂成本。贵金属单原子的电子结构会受到掺杂基底组成的显著影响。因此,通过对基底进行适当掺杂来优化电子结构,可以进一步提高催化活性。在此,将铂单原子(Pt SAs)掺杂到过渡金属硫化物基底NiS(Pt SAs-NiS)和磷化物基底NiP(Pt SAs-NiP)上,以设计和制备催化剂。与Pt SAs-NiS催化剂相比,Pt SAs-NiP催化剂表现出更好的析氢催化性能和稳定性。在1 M KOH条件下,Pt SAs-NiP催化剂在50 mV时的析氢质量活性电流密度达到0.225 A mg,比商业Pt/C催化剂高33倍。达到10 mA cm的电流密度仅需44.9 mV。相比之下,对于Pt SAs-NiS催化剂,析氢质量活性电流密度为0.178 A mg,达到10 mA cm的电流密度需要77.8 mV。理论计算表明,在Pt SAs-NiP中,Pt SAs与NiP基底之间的相互作用导致Pt d带中心向下移动,增强了HO脱附并提供了最佳的H结合位点。此外,NiP的空心八面体形态提供了更大的表面积,暴露出更多的活性位点并改善了反应动力学。这项研究通过选择合适的掺杂基底来控制Pt SAs的电子结构,为制备高性能析氢电催化剂提供了一条有效途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验