Aljawi Salma, Aloqaily Ahmad, Mlaiki Nabil
Department of Mathematical Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Department of Mathematics, Islamia College Peshawar, Peshawar 25120, Khyber Pakhtoonkhwa, Pakistan.
Heliyon. 2024 Jul 8;10(14):e34061. doi: 10.1016/j.heliyon.2024.e34061. eCollection 2024 Jul 30.
This work presents an accurate and efficient method, for solving a two dimensional time-fractional Oldroyd-B fluid model. The proposed method couples the Laplace transform (LT) with a radial basis functions based local meshless method (LRBFM). The suggested numerical scheme first uses the LT which transform the given equation to an elliptic equation in LT space, and then it utilizes the LRBFM to solve transformed equation in LT space, and then the solution is converted back into the time domain via the improved Talbot's scheme. The local meshless methods are widely recognized for scattered data interpolation and for solving PDEs in complex shaped domains. The adaptability, simplicity, and ease of use are features that have led to the popularity of local meshless methods. The local meshless methods are easy and straightforward, they only requires to solve linear system of equations. The main objective of using the LT is to avoid the computation of costly convolution integral in time-fractional derivative and the effect of time stepping on accuracy and stability of numerical solution. The stability and the convergence of the proposed numerical scheme are discussed. Further, the Ulam-Hyers (UH) stability of the proposed model is discussed. The accuracy and efficiency of the suggested numerical approach have been demonstrated using numerical experiments on five different domains with regular nodes distribution.
本文提出了一种精确且高效的方法,用于求解二维时间分数阶Oldroyd - B流体模型。所提出的方法将拉普拉斯变换(LT)与基于径向基函数的局部无网格方法(LRBFM)相结合。所建议的数值格式首先使用拉普拉斯变换将给定方程转换为拉普拉斯变换空间中的椭圆方程,然后利用局部无网格方法求解拉普拉斯变换空间中的转换方程,接着通过改进的Talbot格式将解转换回时域。局部无网格方法在散乱数据插值和求解复杂形状区域中的偏微分方程方面得到了广泛认可。适应性、简单性和易用性是导致局部无网格方法流行的特点。局部无网格方法简单直接,只需要求解线性方程组。使用拉普拉斯变换的主要目的是避免在时间分数阶导数中计算代价高昂的卷积积分以及时间步长对数值解的精度和稳定性的影响。讨论了所提出数值格式的稳定性和收敛性。此外,还讨论了所提出模型的Ulam - Hyers(UH)稳定性。通过在五个具有规则节点分布的不同区域上进行数值实验,证明了所建议数值方法的准确性和效率。