Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany.
Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
ACS Synth Biol. 2024 Aug 16;13(8):2515-2532. doi: 10.1021/acssynbio.4c00281. Epub 2024 Aug 7.
Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont . Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the s of pSymA and pSymB from this strain, resulted in a monopartite genome with as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of , and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in and thus be useful for genome engineering applications, such as generating hybrid genomes.
多组分细菌基因组给基因组工程和额外复制子的建立带来了挑战。我们简化了固氮植物共生体的三分体基因组结构(3.65 Mbp 染色体、1.35 Mbp 大型质粒 pSymA、1.68 Mbp 染色质 pSymB)。通过靶向复制子融合产生了具有双组分和单组分基因组构型的菌株。我们的设计保留了关键的基因组特征,如复制子比、GC 倾斜、KOPS 和编码序列分布。在标准培养条件下,这些菌株和野生型的生长速率几乎相当,并且保持了共生固氮的能力。在三重复制子融合菌株中,复制子的时空组织和分离得到了维持。从该菌株中删除复制起始基因,包括 pSymA 和 pSymB 的 s,导致单组分基因组以 作为唯一的复制起点,复制子比严重失衡,生长缓慢, 细胞定位异常,以及共生缺陷。细胞周期组氨酸激酶 CckA 的 R436H 突变和 3.2 Mbp 的倒位,单独来看,在很大程度上恢复了生长,但只有基因组重排恢复了共生能力。这些菌株将有助于在 中整合次级复制子,因此对于基因组工程应用非常有用,例如生成杂种基因组。