Suppr超能文献

增强脑动静脉畸形分析:基于 3D 成像数据的患者特定集总参数模型的开发与应用。

Enhancing cerebral arteriovenous malformation analysis: Development and application of patient-specific lumped parameter models based on 3D imaging data.

机构信息

Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China.

Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.

出版信息

Comput Biol Med. 2024 Sep;180:108977. doi: 10.1016/j.compbiomed.2024.108977. Epub 2024 Aug 6.

Abstract

OBJECTIVES

Cerebral arteriovenous malformations (AVMs) present complex neurovascular challenges, characterized by direct arteriovenous connections that disrupt normal brain blood flow dynamics. Traditional lumped parameter models (LPMs) offer a simplified angioarchitectural representation of AVMs, yet often fail to capture the intricate structure within the AVM nidus. This research aims at refining our understanding of AVM hemodynamics through the development of patient-specific LPMs utilizing three-dimensional (3D) medical imaging data for enhanced structural fidelity.

METHODS

This study commenced with the meticulous delineation of AVM vascular architecture using threshold segmentation and skeletonization techniques. The AVM nidus's core structure was outlined, facilitating the extraction of vessel connections and the formation of a detailed fistulous vascular tree model. Sampling points, spatially distributed and derived from the pixel intensity in imaging data, guided the construction of a complex plexiform tree within the nidus by generating smaller Y-shaped vascular formations. This model was then integrated with an electrical analog model to enable precise numerical simulations of cerebral hemodynamics with AVMs.

RESULTS

The study successfully generated two distinct patient-specific AVM networks, mirroring the unique structural and morphological characteristics of the AVMs as captured in medical imaging. The models effectively represented the intricate fistulous and plexiform vessel structures within the nidus. Numerical analysis of these models revealed that AVMs induce a blood shunt effect, thereby diminishing blood perfusion to adjacent brain tissues.

CONCLUSION

This investigation enhances the theoretical framework for AVM research by constructing patient-specific LPMs that accurately reflect the true vascular structures of AVMs. These models offer profound insights into the hemodynamic behaviors of AVMs, including their impact on cerebral circulation and the blood steal phenomenon. Further incorporation of clinical data into these models holds the promise of deepening the theoretical comprehension of AVMs and fostering advancements in the diagnosis and treatment of AVMs.

摘要

目的

脑动静脉畸形(AVM)呈现出复杂的神经血管挑战,其特征是直接的动静脉连接,破坏了正常的脑血流动力学。传统的集中参数模型(LPM)提供了 AVM 的简化血管结构表示,但往往无法捕捉 AVM 核心内的复杂结构。本研究旨在通过利用三维(3D)医学成像数据为增强结构逼真度来开发患者特定的 LPM,从而更好地理解 AVM 血流动力学。

方法

本研究首先使用阈值分割和骨架化技术细致地描绘了 AVM 的血管结构。勾勒出 AVM 核心的核心结构,便于提取血管连接并形成详细的瘘管血管树模型。采样点通过从成像数据中的像素强度中空间分布并提取出来,引导在核心内生成较小的 Y 形血管形成,从而构建复杂的丛状树。然后将该模型与电气模拟模型集成,以便对 AVM 大脑血流动力学进行精确的数值模拟。

结果

该研究成功生成了两个独特的患者特定的 AVM 网络,反映了在医学成像中捕获的 AVM 的独特结构和形态特征。这些模型有效地代表了核心内复杂的瘘管和丛状血管结构。对这些模型的数值分析表明,AVM 会引起血液分流效应,从而减少对邻近脑组织的血液灌注。

结论

通过构建准确反映 AVM 真实血管结构的患者特定的 LPM,本研究增强了 AVM 研究的理论框架。这些模型深入了解了 AVM 的血流动力学行为,包括它们对脑循环和盗血现象的影响。进一步将临床数据纳入这些模型有望加深对 AVM 的理论理解,并促进 AVM 的诊断和治疗的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验