Phillips Robert S, Brown S Meredith, Patel Ravi S
Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
ACS Catal. 2024 Jul 18;14(15):11498-11511. doi: 10.1021/acscatal.4c03232. eCollection 2024 Aug 2.
Tryptophan indole lyase (TIL; [E.C. 4.1.99.1]) is a bacterial pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes reversible β-elimination of indole from L-tryptophan. The mechanism of elimination of indole from L-tryptophan starts with the formation of an external aldimine of the substrate and PLP, followed by deprotonation of the α-CH of the substrate, forming a resonance-stabilized quinonoid intermediate. Proton transfer to C3 of the indole ring and carbon-carbon bond cleavage of the quinonoid intermediate provide indole and aminoacrylate bound to PLP, which then releases indole, followed by iminopyruvate. We have now determined the X-ray crystal structures of TIL complexes with (3)-dioxindolyl-l-alanine, an inhibitor, and with substrates L-tryptophan, 7-aza-L-tryptophan, and -ethyl-l-cysteine (SEC) in the presence of benzimidazole (BZI), an isostere of the product indole. These structures show a mixture of -diamine, external aldimine, quinonoid, and aminoacrylate intermediates, in both open and closed active site conformations. In the closed conformations of L-tryptophan, (3)-dioxindolyl-l-alanine, and 7-aza-L-tryptophan complexes, hydrogen bonds form between Asp-133 with N1 of the ligand heterocyclic ring and NE2 of His-458 in the small domain of TIL. This hydrogen bond also forms in the BZI complex with the aminoacrylate intermediates formed from both L-tryptophan and SEC. The closed quinonoid complex of 7-aza-L-tryptophan shows that the azaindole ring in the closed conformation is bent out of plane of the Cβ-C3 bond by about 40°, putting it in a geometry that leads toward the transition-state geometry. Thus, both conformational dynamics and substrate activation play critical roles in the reaction mechanism of the TIL.
色氨酸吲哚裂解酶(TIL;[E.C. 4.1.99.1])是一种细菌依赖磷酸吡哆醛(PLP)的酶,可催化从L-色氨酸中可逆地β-消除吲哚。从L-色氨酸中消除吲哚的机制始于底物与PLP形成外部醛亚胺,随后底物的α-CH去质子化,形成共振稳定的醌型中间体。质子转移至吲哚环的C3以及醌型中间体的碳-碳键断裂产生与PLP结合的吲哚和氨基丙烯酸酯,然后释放吲哚,接着是亚氨基丙酮酸。我们现已确定了TIL与抑制剂(3)-二氧吲哚基-L-丙氨酸以及在产物吲哚的等电子体苯并咪唑(BZI)存在下与底物L-色氨酸、7-氮杂-L-色氨酸和β-乙基-L-半胱氨酸(SEC)形成的复合物的X射线晶体结构。这些结构显示了在开放和封闭活性位点构象中,二胺、外部醛亚胺、醌型和氨基丙烯酸酯中间体的混合物。在L-色氨酸、(3)-二氧吲哚基-L-丙氨酸和7-氮杂-L-色氨酸复合物的封闭构象中,TIL小结构域中的Asp-133与配体杂环的N1以及His-458的NE2之间形成氢键。在BZI复合物中,由L-色氨酸和SEC形成的氨基丙烯酸酯中间体也形成了这种氢键。7-氮杂-L-色氨酸的封闭醌型复合物表明,封闭构象中的氮杂吲哚环比Cβ-C3键平面弯曲约40°,使其处于趋向过渡态几何结构的几何形状中。因此,构象动力学和底物活化在TIL的反应机制中都起着关键作用。