Lee Myeong Joo, Kim Mun Ho
Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Dec 15;323:124931. doi: 10.1016/j.saa.2024.124931. Epub 2024 Aug 3.
A critical bottleneck in sensor technology is the rapid and precise detection of specific analytes in complex matrices, hindering advancements in environmental monitoring, healthcare, and industrial process control. This study addresses this challenge by introducing a novel composite hydrogel sensor designed for rapid and selective detection of ethanol and barium ions (Ba) in aqueous environments. The sensor integrates interpenetrating network (IPN) hydrogels with embedded colloidal photonic crystals (CPCs), synthesized via a solution-based polymerization approach. This innovative configuration allows CPCs to dynamically adjust their photonic bandgap in response to environmental changes, manifesting as a visible, colorimetric shift. This response stems from the synergy between the mechanical properties of the IPN hydrogel and the optical sensitivity of CPCs. Upon exposure to analytes such as ethanol and Ba, the sensor exhibits a rapid and reversible color transition that is directly proportional to their concentration. Notably, ethanol (0 vol%-80 vol%) and Ba (5-17.5 mM) induce a distinct blueshift in the photonic bandgap and trigger a color change from red-orange to green due to the alteration in the swelling behavior of the IPN hydrogel, affecting its lattice constant. The IPN hydrogel-CPC composite demonstrates exceptional operational stability and facilitates rapid detection, making it ideal for on-site applications without the need for complex equipment. These characteristics make the composite hydrogel sensor a promising candidate for environmental monitoring, industrial process control, and public health diagnostics, paving the way for the development of next-generation responsive sensor materials.
传感器技术中的一个关键瓶颈是在复杂基质中快速、精确地检测特定分析物,这阻碍了环境监测、医疗保健和工业过程控制等领域的发展。本研究通过引入一种新型复合水凝胶传感器来应对这一挑战,该传感器专为在水性环境中快速、选择性地检测乙醇和钡离子(Ba)而设计。该传感器将互穿网络(IPN)水凝胶与嵌入式胶体光子晶体(CPC)集成在一起,通过基于溶液的聚合方法合成。这种创新的结构使CPC能够根据环境变化动态调整其光子带隙,表现为可见的比色变化。这种响应源于IPN水凝胶的机械性能与CPC的光学灵敏度之间的协同作用。当暴露于乙醇和Ba等分析物时,传感器会呈现快速且可逆的颜色转变,且该转变与它们的浓度成正比。值得注意的是,乙醇(0 vol%-80 vol%)和Ba(5-17.5 mM)会导致光子带隙出现明显的蓝移,并由于IPN水凝胶溶胀行为的改变影响其晶格常数,从而引发从红橙色到绿色的颜色变化。IPN水凝胶-CPC复合材料表现出卓越的操作稳定性并便于快速检测,使其成为无需复杂设备的现场应用的理想选择。这些特性使复合水凝胶传感器成为环境监测、工业过程控制和公共卫生诊断的有前途的候选者,为下一代响应式传感器材料的开发铺平了道路。